All Posts

Analytics
Greg Horne 0
Is telemedicine the future of medicine?

I first used telemedicine (the remote diagnosis and treatment of patients by means of telecommunications technology) in the mid-90s when I was working as an on-call CT technician in the UK. We used a modem to transfer head trauma scans to the local neurology center for assessment so that the

Analytics | Data for Good
SAS Korea 0
SAS, 데이터 분석으로 허리케인 플로렌스 재해 복구 활동에 나서다!

초강력 허리케인 '플로렌스’ 미국 남동부 지역을 강타하다 지난 9월, 대서양에서 발생한 초강력 허리케인 '플로렌스(Florence)'가 미국 노스캐롤라이나주를 비롯한 미국 남동부 지역을 강타했습니다. 하루 무려에 762mm 기록적 물폭탄이 내리면서 허리케인으로 인한 재산 피해액은 총 170~220억달러(약 19조~25조원) 인것으로 추정되기도 했는데요. 허리케인 플로렌스가 쓸고 간 자리에는 집, 일자리, 건물, 학교 등을 잃은 이재민들이 남았습니다.

Advanced Analytics | Customer Intelligence | Machine Learning
SAS Korea 0
SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 블랙 박스 모델의 해석력 이해하기

지난 'SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 머신러닝의 블랙 박스 모델이란’ 블로그에서 머신러닝 모델은 다면적이고 계속 진화하는 주제라고 소개해드린 바 있는데요. 오늘은 머신러닝 모델의 해석력(Interpretability)에 대해 자세히 살펴보고자 합니다. 머신러닝 모델은 놀라운 예측 능력을 제공하지만 매우 복잡하여 이해하기 쉽지 않습니다. 또한 머신러닝 모델은 예측한 결과에 대한 명확한 설명도 제공하지 않기

1 319 320 321 322 323 731