Find out how analytics, from data mining to cognitive computing, is changing the way we do business
Are you looking for a Data Science easy button? The Data Science Pilot Action Set comes pretty close.
Find out how analytics, from data mining to cognitive computing, is changing the way we do business
Are you looking for a Data Science easy button? The Data Science Pilot Action Set comes pretty close.
Computing rates and proportions is a common task in data analysis. When you are computing several proportions, it is helpful to visualize how the rates vary among subgroups of the population. Examples of proportions that depend on subgroups include: Mortality rates for various types of cancers Incarceration rates by race
The EFFECT statement is supported by more than a dozen SAS/STAT regression procedures. Among other things, it enables you to generate spline effects that you can use to fit nonlinear relationships in data. Recently there was a discussion on the SAS Support Communities about how to interpret the parameter estimates
Vivemos um tempo onde, quer nos sectores produtivos da nossa economia, quer em toda a área de prestação de serviços, se tem vindo a perspectivar a introdução de novas tecnologias de automatização de tarefas. Os avanços científicos e a maturidade de conhecimento que foram sendo alcançados num conjunto vasto de
I recently wrote about how to use PROC TTEST in SAS/STAT software to compute the geometric mean and related statistics. This prompted a SAS programmer to ask a related question. Suppose you have dozens (or hundreds) of variables and you want to compute the geometric mean of each. What is
Por Juan Sebastián Niño Customer Advisory Analytics SAS Colombia En Colombia, y probablemente en toda América Latina, existe un juego para niños llamado Policías y ladrones. Dentro del juego, un grupo de niños son los ladrones y el otro grupo son los policías. Mientras que los ladrones deben correr a
Proper data prep means faster, better analytics. Guest blogger Jenine Milum shares tips.
En la actualidad es una prioridad estar preparado y responder de una manera rápida y eficaz a las amenazas de fraude que se han incrementado en años recientes. Detectar y prevenir el fraude son tareas que deben considerar múltiples canales y líneas de negocios y que pueden ser monitoreados en
What can data tell us about the easiest hole at your favorite golf course? Or which hole contributes the most to mastering the course? A golf instructor once told me golf is not my sport, and that my swing is hopeless, but that didn’t stop me from analyzing golf data!
In a previous article, I mentioned that the VLINE statement in PROC SGPLOT is an easy way to graph the mean response at a set of discrete time points. I mentioned that you can choose three options for the length of the "error bars": the standard deviation of the data,
Por Sandra Hernández *Post basado en la presentación de Wilson Raj en SAS Forum Colombia “No sé qué decir en realidad. Tres minutos para la mayor batalla de nuestras vidas. Todo se reduce a hoy: o nos jugamos como equipo o nos desmoronamos. Jugada a jugada, pulgada a pulgada hasta
Foresight Editor-in-Chief Len Tashman's Preview of the Fall 2019 Issue This 55th issue of Foresight opens with an article from Phillip Yelland, Zeynep Erkin Baz, and David Serafini of the Data Science/AI team at Target: Forecasting at Scale: The Architecture of a Modern Retail Forecasting System. The challenge of scale
El éxito en el desarrollo e implementación de las iniciativas analíticas empresariales requiere que se tengan propósitos claros, una alineación con los objetivos del negocio, una adecuada captura y calidad de datos, una gestión y mejoramiento continuo de los modelos analíticos desarrollados y no menos importante, la operacionalización o puesta
¿Se puede utilizar un programa de análisis para todos los tipos de lenguajes de programación y todos los niveles de usuarios? ¿Cómo se puede garantizar la coherencia entre sus modelos y acciones resultantes? Con las tecnologías analíticas actuales, la conversación sobre analítica abierta y analítica comercial ya no es una
I frequently see questions on SAS discussion forums about how to compute the geometric mean and related quantities in SAS. Unfortunately, the answers to these questions are sometimes confusing or even wrong. In addition, some published papers and web sites that claim to show how to calculate the geometric mean
Cada vez más organizaciones se están moviendo a la nube, pero hay cierta información delicada que quiere mantenerse bajo una capa adicional de seguridad. Con la implementación de soluciones de software y servicios administrados de forma remota (RMSS), aún es posible experimentar los beneficios de la nube, sin que las
Did you know the first SAS® Users Group event took place before SAS was incorporated as a company? In 1976, hundreds of early SAS users gathered in sunny Kissimmee, FL to share tips and offer feedback before SAS was even officially a company. Our users have continued to influence the
*Post basado en la presentación de Andrés Villa en el SAS Forum Colombia ¿Por qué muchas personas y empresas están hablando de Inteligencia Artificial (IA) hoy en día? Probablemente porque es tendencia en todo el mundo, pero también por su impacto, ya que es una de las tecnologías exponenciales que
Empecemos por aclarar un concepto que hoy se presta fácilmente a confusiones. El Aprendizaje Profundo (Aprendizaje Profundo o “AP”) es un tipo de Aprendizaje Automático que entrena una computadora para que adquiera algunas capacidades de los seres humanos, como el reconocimiento del habla, la identificación de imágenes o plantear predicciones.
Industrial leaders need an #IoT #analytics platform and a strategy that generates intelligence in lockstep with business needs.
A relação do SAS com o Banco Totta & Açores – que entretanto se fundiu com o Banco Santander, dando origem ao Banco Santander Totta, uma das maiores instituições financeiras a atuar em Portugal – data de 1998, com sete users PC e a implementação do SAS Warehouse Administrator. Nos
This article continues a series that began with Machine learning with SASPy: Exploring and preparing your data (part 1). Part 1 showed you how to explore data using SASPy with Python. Here, in part 2, you will learn how to begin to prepare your data to use it within a
In part 1 of this post, we looked at setting up Spark jobs from Cloud Analytics Services (CAS) to load and save data to and from Hadoop. Now we are moving on to the next step in the analytic cycle, scoring data in Hadoop and executing SAS code as a
En el año 1832 se publicó en un periódico de la ciudad de Ilmenau (Alemania) un pequeño aviso en una publicación que decía “El Agente Viajero: Qué debe hacer para recibir pedidos y asegurar resultados exitosos en sus negocios – Palabras de un Repartidor”. Este pequeño manual, que traía algunos
One of the strengths of the SAS/IML language is its flexibility. Recently, a SAS programmer asked how to generalize a program in a previous article. The original program solved one optimization problem. The reader said that she wants to solve this type of problem 300 times, each time using a
Put simply, data literacy is the ability to derive meaning from data. That seems like a straightforward proposition, but, in truth, finding relationships in data can be fraught with complexities, including: Understanding where the data came from, including the lineage or source of that data. Ensuring that the data meet compliance
Could data governance policies for analytics be the foundation for a model governance program?
SAS Visual Analytics on SAS Viya(以降VA)の最新版8.4に搭載されている新機能の中から、以下5つの機能に関してダイジェストでご紹介します。 1.AIストーリーテラー機能 2.レポート編集&表示切替の利便性向上 3.閲覧時レポートカスタマイズ&制御 4.分析用ビジュアル候補提示 5.カスタムグループ作成の容易化 6.Visual Analytics SDK 1.AIストーリーテラー(自動分析&解説)機能 VA8.3から搭載されていた機能やUIが拡張されています。 AIストーリーテラー(自動分析&解説)機能では、分析対象の変数(ターゲット)を指定するだけで、その変数に影響を与えているその他の変数の特定や、変数ごとにどのような条件の組み合わせがターゲット変数に依存しているのかを「文章(条件文)」で表現して教えてくれます。 この例で使用するデータ「HMEQJ」は、ローンの審査を題材にしたもので、顧客ごとに1行の横持ちのデータです。このデータ内にある「延滞フラグ」が予測対象の項目(ターゲット変数)で、0(延滞なし)、1(延滞あり)の値が含まれています。 データリスト内の「延滞フラグ」を右クリックし、「説明」>「現在のページで説明」を選ぶだけで、「延滞フラグ」をターゲット変数に、その他の変数の組み合わせを説明変数とした複数の決定木(ディシジョンツリー)が実行され、 以下のような結果が表示され、見つけ出された有用な洞察を説明してくれます。 分析結果画面内説明: ① 予測対象値(0:延滞なし、1:延滞あり)の切り替えが可能です。この例では、「1:延滞あり」を選択し、「延滞する」顧客に関して分析しています。 ② 全体サマリーとして、すべての顧客の内、延滞実績のある顧客は19.95%(5,960件中の1,189件)であることが示されています。 ③ 「延滞する」ことに関して影響を与えている変数の重要度を視覚的に確認することができます。最も影響度の高い変数(今回は「資産に対する負債の割合」)の重要度を1として、1を基準値にした相対重要度が算出され、横棒グラフで表示されます。従来版に比べて、変数ごとの影響度合いの違いを明確に捉えることができます。 ④ 「高」タブには、「延滞する」可能性が高いトップ3のグループ(条件の組み合わせ)が文章で示され、「低」タブには、「延滞する」可能性が低いトップ3のグループ(条件の組み合わせ)が文章で示されます。この例では、③で「資産価値」が選択され、「資産価値」に基づき、延滞する可能性の高い/低いグループのトップ3が表示され、「資産価値」に関する条件部分がハイライトしています。 ⑤ この例では、③で「資産価値」が選択され、これに応じて「0:延滞なし、1:延滞あり」別の顧客の分布状況がヒストグラムで表示されています。選択された変数が数値属性の場合は、ヒストグラムで、カテゴリ属性の場合は積み上げ棒グラフで表示されます。チャートの下端では、チャートから読み取れる内容を文章で解説しています。 以下は、カテゴリ属性の変数を選択した場合の表示例です。 以上のように、分析スキルレベルの高くないビジネスユーザーでも、簡単かつ容易に、そして分かり易くデータから有効な知見を得ることができます。 ※AIストーリーテラー機能に関しては、SAS Viya特設サイトのビジュアライゼーションセクションで動画でもご覧いただけます。 2.レポート編集&表示切替の利便性向上 従来のVAでは、編集モードで作成したレポートを表示モードで確認する際には、メニューから「レポートを開く」を選択し、レポートが表示されるのを少し待つ必要がありました。また、レポート表示モードから編集モードに戻るにもメニューから「編集」を選択する必要がありました。 VA8.4では、編集モードと表示モード切替の利便性が改善され、画面左上のペンシルアイコンをクリックするだけで、編集画面<->表示画面間を瞬時に切り替えられるので作業効率が向上します。 また、ご覧の通り、編集画面と表示画面のレイアウトも統一されています。 3.閲覧時レポートカスタマイズ&制御 一般的にBIツールでは、対象ユーザーを3つの層(管理者、レポート作成者(デザイナ)、レポート閲覧者(コンシューマ))に分類し、それぞれに最適なインターフェースを提供しています。しかし、レポート閲覧者の中には、「基本的には誰かが作成したレポートを見るだけでいいんだけど、自分好みに変更できたらもっといいのにな…」という声も多くあります。このレポートカスタマイズ者層に答えられないために、彼らは、レポートを開き、そのデータをダウンロードし、Excelに取り込んで好みのレポートを作成しようとするのです。 VA8.4では、レポートカスタマイズ者層向けに、作成済みレポートを開いて閲覧中に、簡単操作で好みに合うようにレポートをカスタマイズすることができるようになりました。 以下は、レポート閲覧中に「円グラフ」を他のチャートタイプに変更するメニューが表示されている例です。 また、レポート作成者は、レポートカスタマイズ者向けに、カスタマイズ可能な機能範囲を3段階で制御することが可能です。 これで、レポート作成者の負担も軽減され、レポート閲覧者の痒いところに手が届きそうですね。 4.分析用ビジュアル候補提示 レポート作成の元となるデータソースを選択すると、そのデータソース内の項目に基づき、「こんな分析が有効じゃないの…」と、分析画面の候補を自動的に提示してくれる機能です。 画面左端から電球マークの「候補」アイコンをクリックすると、分析候補がいくつか表示され、提示された分析画面をドラッグ操作でレポートに挿入することができます。 より素早く、効果的な情報を含むレポートを作成することができそうですね。これも一つの自動分析機能です。 5.カスタムグループ作成の容易化 従来版のVAでは、カスタムグループを作成する際には、カスタムグループ作成専用の画面内で、グループに含める要素の選択と、グループ名称を設定し、OKをクリックしてチャートに反映させる必要がありましたが、VA8.4では、チャート上でグループ化対象の要素を選択し、そのグループに名称を設定して、素早くカスタムグループを作成することができるようになりました。 6. Visual Analytics SDK
Seitdem SAS Deutschland die Jugendförderung des Rugby Baden-Württemberg (RBW) unterstützt – ein langfristiges Engagement seit 1995 -- hat der südwestdeutsche Verband sage und schreibe 83 Nationalspieler, 55 Nationalspielerinnen und rund 100 U18-Nationalspieler hervorgebracht - das sind rund 75% aller Rugby Nationalspieler Deutschlands! 100 Kinder und Jugendliche waren auch in diesem
North Carolina is one of those key "swing states" that might possibly decide a national presidential election. And with such an election coming up next year (2020), I thought I would have a look at the voter registration data to see how it has changed since the previous presidential election