Tag: AI

Advanced Analytics | Artificial Intelligence | Internet of Things
Christian Goßler 0
Bolschewistische Rotationsbeschleunigung im Internet of Tumble (IoT8)

„Für mich heißt Internet of Things, dass hier alles rotiert wie in einem Wäschetümmler und es weder Durcheinander noch Stillstand gibt.“ Frau Dönmek hatte Lenin und mich am Werkstor in Cedorf abgeholt und uns gleich in die Halle zu ihrer Anlage geführt: „Wir arbeiten an der Kapazitätsgrenze. Was wir wegen

Artificial Intelligence | Customer Intelligence
Gerhard Svolba 0
Real-Time Scoring and Customer Behaviour Analysis Are Not New! Mrs. Cerny Applied These Methods Decades Ago

The epoch of artificial intelligence and real-time decision engines is not the first time that historical and actual behaviour of customers has been tracked and analysed. The practice of making decisions based on these findings and applying them in real time to customer interactions was already going on in the

Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
John Maynard 0
Unasked fraud questions answered by AI

Artificial intelligence often seems misunderstood, especially in fraud. The same is true of machine learning. One of the amazing things about them is they ask the unasked questions. This occurs as artificial intelligence (AI) and machine learning (ML) go about their daily work. So, what is the unasked question? Too

Advanced Analytics | Analytics | Artificial Intelligence
Svein Tore Bø 0
Support, openness and flexibility: The momentum towards the analytics platform

Over the last few years, a quiet and gradual, but nonetheless important, evolution has been taking place. There has been a move from traditional business intelligence or analytics software towards the use of open platforms that underpin analytics activity, and can integrate customers’ own solutions, reducing reliance on proprietary software.

Analytics | Artificial Intelligence | Students & Educators
Andreas Becks 0
AI and the fear for your job: How an emotional debate can become a factual and constructive discussion

Will AI dramatically accelerate the division of our society into the “elite” and the “worried rest”? For example, will there be highly effective personalized medicine that only very few can afford? Will AI take over the automatable jobs of the middle class, while the highly qualified elite maintains or even

Advanced Analytics | Artificial Intelligence | Data Management
David Downing 0
How to rebuild citizen trust & unlock the power of AI

According to the Organisation for Economic Cooperation and Development (OECD), “service performance, citizen satisfaction and public trust are closely connected. Yet how can governments overcome citizens’ declining levels of trust in the way that their data is collected and used in order to improve service accessibility and quality? It’s not difficult

Artificial Intelligence | Machine Learning | Programming Tips | Risk Management
Sian Roberts 0
Deep learning for numerical analysis explained

Deep learning (DL) is a subset of neural networks, which have been around since the 1960’s. Computing resources and the need for a lot of data during training were the crippling factor for neural networks. But with the growing availability of computing resources such as multi-core machines, graphics processing units

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Machine Learning
Makoto Unemi (畝見 真) 0

AIプラットフォームSAS Viyaでは、「AI実用化」や「AI民主化」を促進するために、従来から自動予測モデル生成や、機械学習やディープラーニングの判断根拠情報の提供などを可能としていましたが、SAS Visual Analytics on SAS Viyaの最新版8.3では、新たに「自動分析」機能が実装されました。 「自動分析」機能を使用すると、予測(ターゲット)に影響を与えている変数の特定や、変数ごとにどのような条件の組み合わせがターゲットに依存しているのかを「文章(条件文)」で表現して教えてくれます。 この例で使用するデータ「HMEQJ」は、ローンの審査を題材にしたもので、顧客ごとに1行の横持ちのデータです。このデータ内にある「延滞フラグ」が予測対象の項目(ターゲット変数)で、0(延滞なし)、1(延滞あり)の値が含まれています。 データリスト内の「延滞フラグ」を右クリックし、「分析」>「現在のページで分析」を選ぶだけで、「延滞フラグ」をターゲット変数に、その他の変数を説明変数とした分析が自動的に行われ、 以下のような結果が表示されます。 分析結果画面内説明: ① ドロップダウンリストで、予測対象値(0:延滞なし、1:延滞あり)の切り替えが可能です。この例では、「1:延滞あり」を選択し、「延滞する」顧客に関して分析しています。 ② 全体サマリーとして、すべての顧客の内、延滞実績のある顧客は19.95%であり、「延滞する」ことに関して影響度の高い変数が順に表記されています。 ③ 「延滞する」ことに関して影響を与えている変数の度合い(スコア)を視覚的に確認することができます。 ④ 「延滞する」可能性が最も高くなるグループ(条件の組み合わせ)が文章で示されています。この例では、③で「資産に対する負債の割合」が選択され、これに応じて文章内の該当箇所がハイライトしています。 ⑤ この例では、③で「資産に対する負債の割合」が選択され、これに応じて「0:延滞なし、1:延滞あり」別の顧客の分布状況がヒストグラムで表示されています。選択された変数が数値属性の場合は、ヒストグラムで、カテゴリ属性の場合は積み上げ棒グラフで表示されます。 分析に使用する説明変数(要因)に関しては、右側の「データ役割」画面内で選択することができます。 以上のように、分析スキルレベルの高くないビジネスユーザーでも、簡単かつ容易に、そして分かり易くデータから有効な知見を得ることができます。 ※AIプラットフォーム「SAS Viya」を分かり易く学べる「特設サイト」へGO!

1 2 3 6