Tag: AI

Machine Learning
SAS Viya: ディープラーニングと機械学習の判断根拠情報

前回の「ディープラーニングの判断根拠」ブログでは、PythonからSAS Viyaの機能を活用するためのパッケージであるSWATを使用した例を説明しましたが、今回は、以下2点に関してご紹介します。 SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 機械学習の判断根拠情報 1.SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 この例では、複数のイルカとキリンの画像をSAS Viyaのディープラーニング(CNN)で学習させ、そのモデルに以下の画像を当てはめて、これがイルカなのか否かを判別するものです。 実際、この画像はイルカであると判定されたんですが。 SAS Viyaでは、その判断根拠となり得る情報の一つとして、入力画像のどこに着目したのかを以下の通り出力し、確認できるようになっています。 DLPyでは、get_feature_maps()メソッドでfeature mapを取得し、feature_map.display()で指定したレイヤーの内容を表示することができます。 以下は、レイヤー1のfeature mapです。 以下は、レイヤー18のfeature mapです。 白色の濃淡で、判別に影響を与えている箇所を確認することができます。 さらに、SAS Viyaでは、画像認識モデルの判断根拠情報を可視化する手法の一つである、Grad-CAMと同様に、画像の何処に着目したのかを、カラフルなヒートマップとして出力し、確認することもできるようになっています。 しかも、heat_map_analysis()メソッドを使用して、以下の通り、たった1行書くだけでです。 青、緑、赤の濃淡で、判別に影響を与えている箇所を確認することができます。 DLPyの詳細に関しては、以下をご覧ください。 https://github.com/sassoftware/python-dlpy 2.機械学習の判断根拠情報 もちろんディープラーニングだけではなく、従来からの機械学習のモデルによって導き出された予測や判断に関しても、それがなぜ正しいと言えるのか、具体的に言えば、なぜAさんはこの商品を買ってくれそうだと判断されたのか、なぜこの取引データは疑わしいと判断されたのか、を説明する必要性があるわけです。特に説明責任が求められるような業務要件においては、 ということでSAS Viyaの次期版には機械学習の判断根拠情報、モデル内容を説明するための機能が実装される予定です。 まず、影響度が最も高い変数は、という問いに対しては、従来からの変数の重要度で確認することができます。これをさらに一段掘り下げたものが、Partial Dependence (PD)です。 日本語では「部分従属」と言いますが。重要度の高い変数は、予測に対して、具体的にはどのように作用しているのかを知ることができます。 そしてこのPDを元にさらに一段掘り下げたものが、Individual Conditional Expectation (ICE)になります。 また、これらとは別に、なぜその予測結果に至ったのかを説明するテクニックとしてLocal Interpretable Model-agnostic Explanations (LIME)を活用することができます。 SAS Viyaベースの製品であるSAS Visual Data Mining and

Data Visualization
SAS Visual Analyticsで地図上にカスタム境界線(領域)を描いて分析―(続編)

前回、この機能を紹介した際には、海外に実在する施設や地図上での活用例をご覧いただきました。 その続編となる今回は、以下の2点に関してご紹介します。 (尚、以下のデモ画面に表示されている数値(座席数、利用率、収益率、等)はすべてダミーデータです)   1.日本地図上に実在する施設に対するカスタム境界線分析 2.カスタム境界線機能で、こんなことまでできるなんて…   1.日本地図上に実在する施設に対するカスタム境界線分析 私は埼玉県さいたま市に在住しているのですが、だからというわけではありませんが、今回は、埼玉スタジアムの座席レイアウトを地図上の埼玉スタジアム上に描画してみました。(図1.参照) 図1.埼玉スタジアム地図上に描画された、観客席レイアウト 図1.では、「客席別利用率」ページが表示されています。 左側には客席ゾーン別の座席数が棒グラフで表示され、右側には、スタジアムの客席レイアウトが表示され、利用率によって色分けされています。また、棒グラフ上でゾーンCが選択され、スタジアム内の対応する客席の部分がハイライトされている状態です。 もちろん、SAS Visual Analytics(以降、VA)の標準機能を使用して、特定の客席エリアをクリックし、そのエリアのチケット料金や、収益の推移、などの詳細情報をポップアップで表示させることも可能です。 右側の地図が本当に埼玉スタジアムのある地点なのかを分かりやすく見ていただくために、図2.ではズームアウトしたものも載せました。埼玉スタジアムは国道122号線沿いにあるんですね。 図2.図1.から地図を少しズームアウトした状態 以下の図3.は同じレポート内の「ゾーン別客席マップ」ページです。棒グラフのゾーン別の色に合わせて、客席エリアの色を合わせたものです。 図3.「ゾーン別客席マップ」ページ   2.カスタム境界線機能で、こんなことまでできるなんて… 実は、VAの地図描画用オブジェクトである、「ジオマップ」では、地図を非表示にすることができます。 あれ?、地図描画用の機能なのに、地図を非表示にする意味あるの?と思われるかと思いますが、これがあるんですね。 その一例をご紹介します。 以下の図4.は、とある列車の車両内の座席別収益率を分析するレポートです。座席ごとの収益率が色分けで表示されています。(座席別に収益率を把握する必要があるかどうかは別のお話ですが) 図4.列車内座席別収益率レポート この座席レイアウトも「ジオマップ」オブジェクトを使用し、地図上に描画されているものなのですが、地図は境界線(領域)を描くためには必要ですが、この例のような場合は、描いた後は地図が必要ないので非表示にしているわけです。地図を非表示にしていること以外は、その他の例と同様に、チャートやアナリティクスとのインタラクション等はもちろん可能です。 上記の図4.でも、座席別収益率の棒グラフ上で、最も収益率の低い座席(右端の棒)を選択し、該当の座席位置をハイライト表示しています。 SAS Visual Analytics on SAS Viyaでは、こんなこともできるんですね。 例えば、人体図の中の内臓別の疾患状況をビジュアルに分析する、工場内プラントの設備(工程)ごとの稼働状況を図解でビジュアルに可視化し分析する、店舗内の商品陳列棚別の在庫状況や売上状況を図解でビジュアルに可視化し分析する…なんていうこともできそうですね。

Machine Learning
Makoto Unemi (畝見 真) 0
ディープラーニングの判断根拠

予測モデル生成において、従来は、人が考えてデータの中から特徴を抽出する必要がありましたが、ディープラーニングでは、この特徴を自動的に抽出して学習することが可能になっています。 半面、どのように特徴が抽出されているのかに関しては、基本的にはブラックボックスであり、説明責任が求められるような業務要件では、その分析結果を業務に活用することが難しい場合もあります。 しかし、近年ディープラーニングから出てきた結果の根拠=判断根拠を可視化する手法がいくつか考案されてきています。 関連情報サイト: https://qiita.com/icoxfog417/items/8689f943fd1225e24358 https://pair-code.github.io/saliency/ http://blog.brainpad.co.jp/entry/2017/07/10/163000 SAS Viyaでは、各種のディープラーニング(DNN, CNN, RNN)を用いた学習が可能ですが、今回はCNNを用いた画像認識において、判断根拠となり得る情報の出力に関してご紹介します。 この例は、複数のイルカの画像をCNNで学習し、対象の画像(写真)がイルカなのかどうかを判別するものです。 モデルを作成後、以下の画像をモデルに当てはめてスコアリングを実施。 この画像は「イルカ」だと判定されたのですが、その判断根拠の一つとして、以下のように、この画像のどの部分がより重要であると判断されているのかを可視化することが可能になっています。 【レイヤー1のfeature map】 【レイヤー18のfeature map】 SAS Viyaでは、モデルのスコアリング時のオプションとして、指定したレイヤ(層)の特徴マップ(feature map)を画像として指定ライブラリに出力することが可能です。 >> スコアリング用のアクション:”dlScore” の layerOut={出力先ライブラリとテーブル名} オプションと layers={出力対象レイヤ名} オプション >> 上図はライブラリに出力された画像(feature map)を表示したものです。

Analytics | Machine Learning
Thomas Keil 0
Künstliche Intelligenz braucht Interpretierbarkeit, Nachvollziehbarkeit und Kommunikation

Wahrscheinlich schreibt Richard David Precht gerade an einem Buch über künstliche Intelligenz – und es wäre wirklich nicht schlecht, wenn sich möglichst viele Menschen so genau wie möglich über dieses Thema informieren könnten, ohne selbst Spezialist sein zu müssen. Denn, das ist 2017 bereits klar geworden, künstliche Intelligenz betrifft uns

1 2 3 4 5 7