Uncategorized

Data Management
David Loshin 0
Embedding event stream analytics

In my last two posts, I introduced some opportunities that arise from integrating event stream processing (ESP) within the nodes of a distributed network. We considered one type of deployment that includes the emergent Internet of Things (IoT) model in which there are numerous end nodes that monitor a set of sensors,

Learn SAS
Jim Simon 0
Weird PROC FREQ trick

Default PROC FREQ output looks like this: Suppose you don't want the two cumulative statistic columns above.  No problem.  Those can be suppressed with the NOCUM option on the TABLE statement, like this: proc freq data=sashelp.shoes; table product / nocum; run;

Analytics
Tobias Nittel 0
Software stirbt - alles wird zu Software

Alles wird zu Software : Wir hören es derzeit überall - Firmen erfinden sich neu. Ob Automobil, Kraftwerk oder Einzelhändler, alle Geschäftsmodelle sollen sich vom Produkthersteller oder -verteiler, hin zum Services-Geschäft bewegen. Über die USA weiss man ja, dass fast 80% des Bruttosozialproduktes aus den Dienstleistungen kommen. Oftmals weniger bekannt

Stuart Rose 0
Time is precious, so are your analytical models

The analytical lifecycle is iterative and interactive in nature. The process is not a one and done exercise, insurance companies need to continuously evaluate and manage its growing model portfolio. In the last of four articles on the analytical lifecycle, this blog will cover the model management process. Model management

Data Management
David Loshin 0
Pushing event analytics to the edge

In my last post, we examined the growing importance of event stream processing to predictive and prescriptive analytics. In the example we discussed, we looked at how all the event streams from point-of-sale systems from multiple retail locations are absorbed at a centralized point for analysis. Yet the beneficiaries of those

Andreas Becks 0
Big Data Strategie erfolgreich entwickeln

Das Big Data Lab von SAS - Big Data Strategie 1995 - World Wide Web. Erinnern Sie sich, wie komplex und kompliziert es für ein Unternehmen war, eine eigene Website aufzubauen, Anwendungen zu definieren, diese redaktionell zu betreuen und die nötige Infrastruktur zu betreiben – heute unvorstellbar! Und sogar das Surfen

Charlie Chase 0
Stop cleansing your historical shipment data!

The real reason companies cleanse the historical demand is that traditional forecasting solutions were unable to predict sales promotions or correct the data automatically for shortages, or outliers. To address the short comings of traditional technology, companies embedded a cleansing process of adjusting the demand history for shortages, outliers, and

1 168 169 170 171 172 255