Internet of Things

Stay up on IoT trends, business opportunities and the future of streaming data

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (1) - なぜ医者の診断に例えて学ぶと良いのか?

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。 いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) とOperational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 ------ はい、本日は 「なぜ医者の診断に例えて学ぶと良いのか?」 をテーマにお話しします。 近年、製造業DX、またはインダストリアルIoTと呼ばれるトレンドにより、AIを用いたセンサデータの分析が流行しています。 例えば、 ・ 製造装置の故障予測 (設備状態監視) ・ 生産品の不具合検出 (生産ラインの品質管理) が人気の用途です。 背景としては、熟練者のリタイヤを見越して、彼らが持つ暗黙知の形式知化が必要とされていることや、熟練者ですら見つけられない不具合を検出することで更なる品質向上を実現したいという考えが背景にあります。 そのため、データ分析のリーディングカンパニーである弊社には、世界各国において、センサデータの分析に関する御相談が数多くやってまいります。 それと同時に様々な誤解が生じていることがわかってまいりました。 ところが、数多くのお客様とお話をしていくと、多くの誤解や勘違いが存在することがわかってきました。 例えば、 分析アルゴリズムに関して、熱心に調査されているお客様、がおられます。 ごく普通のニーズだと思いますが、お話を伺うとこんな感じになることがあります。 監視対象物や起こっている異常状態が不明 データは持っておらず、機械学習等の分析手法を調査されているご様子であったり、監視対象となる設備機械や生産品が決まっていないというお客様です。 要は情報収集段階だということです。この場合、優秀なデータサイエンティストでも明確な回答はできず、お客様もなかなか納得されない状況が生まれます。 この状況は、医療で例えるなら、病気にもなっていないのに病院に行き、治療方法を熱心にお医者様に相談している状況と同じではないでしょうか? この例え話をさせて頂くと、すぐに状況を御納得頂けます。 データ分析をしても結果が出ない 2017年頃にIoTが流行った際に、まずはセンサで計測してみましょうということで「スタートアップキット」なるものが流行ったことがあります。 この名残で、分析しても結果がでなかったという苦い経験をされたお客様が数多くおられたようです。 投資もしましたし、会社組織としても困りますよね。そこで弊社に相談が来るわけです。 もちろん分析手法が原因である場合もありますが、実は問題の大半は、センサの選定ミスや、取付けミス、生データの取得方法などに関係しています。 この状況は、医療で例えるなら、心臓の病気を見つけるのに、聴診器を足に当てて心音を聞いているような状況が起こっているということです。また、ウィルス性の病気を聴診器で見つけようとしているようなケースも見うけられます。 これでは絶対に病気は見つけられませんよね? 医療に例えれば、あり得ない状況ではありますが、センサデータ分析の世界では、頻発している問題です。 正直、驚きではありますが事実です。 私はこのような状況を、非常にもったいないと感じています。 そのため、本ブログを通して、AIを用いたセンサデータ分析システムに関して生じている様々な誤解について、医者の診断に例えながら、わかりやすく御紹介していけたらと思っております。 その理由ですが、医療診断と、製造業系データの分析の流れは似ているからです(図1)。また、医療診断は、多くの皆様が実体験をお持ちですので、例え話を通して、言われてみればそうだなという感覚を持って頂きやすいのではないかと考えております。 図1. 医療診断の流れと、生産ラインでのデータ分析の流れはよく似ている 今回は、医者の診断に例えると、色々と見えてきますというお話をさせて頂きましたが、次回からは、よくある誤解に関して、次々に御紹介していきます。 テーマとしては、こんな感じの物を予定しています。 ・ 生産ラインにおけるAIを用いたデータ分析の種類について ・ 無症状であり、異常検出が甘くなる原因となる「センサの選択ミス(取得データの選定ミス)」 ・ 無症状であり、異常検出が甘くなる原因となる「センサの設置方法のミス」 ・ 無症状であり、異常検出が甘くなる原因となる「取得データの質が悪いケース」 ・ 患者に寄り添う現場スタッフとのコラボの必要性 ・ 病名は同じでも、症状が微妙に異なるケースへの対処 など 次回に続く

Analytics | Artificial Intelligence | Internet of Things | SAS Events
Einar Halvorsen 0
Why hack? 10 reasons why the SAS Hackathon is more than a competition

In a hackathon, teams of participants collaborate and compete to find the best solutions to a business or humanitarian challenge using technology. But unlike many traditional hackathons where participants meet in person for a couple of days, the SAS Hackathon is all-digital and lasts for a month. Prior to the

Artificial Intelligence | Internet of Things
Tyson Echentile 0
Four technology tips for government leaders preparing for flood disasters

“What’s our plan if we get hit by a big flood?” While this question may be plenty familiar to emergency management professionals, city administrators, legislators, and other leaders in coastal regions that are known for their exposure to potentially disastrous weather events, these days it’s being asked in some unexpected

Advanced Analytics | Artificial Intelligence | Internet of Things
Nick Johnson 0
Your guide for analyzing real time data with streaming analytics from SAS® Viya® on Azure

This article was co-written by Jane Howell, IoT Product Marketing Leader at SAS. Check out her blog profile for more information. As artificial intelligence comes of age and data continues to disrupt traditional industry boundaries, the need for real-time analytics is escalating as organizations fight to keep their competitive edge.

Analytics | Artificial Intelligence | Cloud | Data for Good | Data Management | Internet of Things
Caslee Sims 0
How analytics is helping with climate sustainability

A recent report suggests that the current state of climate change is alarming. Climate change puts billions of people at risk of events like extreme hurricane seasons and rising sea levels. However, data and analytics play a critical role in informing us about the situation, planning ahead, and raising awareness

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Internet of Things | Machine Learning
Charlie Chase 0
Is your demand management process stuck in the 1990s?

Demand management concepts are now over 30 years old. The first use of the term "demand management" surfaced in the commercial sector in the late 1980s and early 1990s. Before that, the focus was on a more siloed approach to demand forecasting and planning that was manual and used simple

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Internet of Things
Ernesto Cantu 0
Resiliencia, la fortaleza de la cadena de suministro del futuro

A lo largo de 2020, las cadenas de suministro estuvieron bajo gran estrés. La pandemia y los altibajos del entorno económico hicieron que las empresas enfrentaran complicados desafíos para seguir produciendo y satisfacer los nuevos patrones de demanda. Si bien privó la incertidumbre, también fue una oportunidad para que las

Analytics | Artificial Intelligence | Internet of Things
Lee Ann Dietz 0
Modern infrastructure must include analytics

Throughout its history, the United States has invested in infrastructure that leverages new technologies and helps society and its economy thrive. With the advent of trains in the early 1800s, four of the country’s five transcontinental railroads were built with assistance from the federal government. When cars replaced horses and

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things
Fadi Glor 0
Dummy's Guide to Predictive Maintenance

Beloved Dummies: Let’s demystify another #AI-hype today: predictive maintenance. Yet another one of these buzzwords that require batteries of #DataScientists and truckloads of programmers. Let me show you how Dummies like you and me can address this. What is predictive maintenance? So we’re talking maintenance of machinery. Sure, you can

Analytics | Artificial Intelligence | Customer Intelligence | Internet of Things
Fernanda Benhami 0
Telecom: servicios de excelencia en tiempo real, la conexión directa con el cliente

Es evidente que las empresas de las telecomunicaciones operan hoy en un entorno complicado que las obliga a tomar decisiones estratégicas importantes que van a definir su negocio en el futuro. Específicamente, son cuatro los factores que influyen en dicho contexto y que tienen un peso significativo en el momento

Analytics | Customer Intelligence | Data Management | Internet of Things
Victoria Silva 0
Como os dados e a internet das coisas impactam o mercado de seguros agrícola e de saúde

Eduardo Polidoro, diretor de negócios de IoT da Claro, falou sobre o potencial da internet das coisas na digitalização dos negócios e o impacto no setor de seguros Keynote speaker da primeira edição do SAS Insurance Summit, Eduardo Polidoro, diretor de negócios de IoT da Claro, abordou em sua palestra

Analytics | Cloud | Data Management | Data Visualization | Fraud & Security Intelligence | Internet of Things
Victoria Silva 0
No Insurance Summit 2021, Agustin Terrile fala sobre principais mudanças do IFRS17

Em palestra no Insurance Summit 2021, Agustin Terrile, consultor especializado em seguros do SAS, mostrou um pouco das mudanças do IFRS17 do ponto de vista da estimativa de fluxos de caixa e demonstrou as etapas para um modelo acurado e ágil. Terille começou falando sobre o motor de cálculo e

Analytics | Artificial Intelligence | Fraud & Security Intelligence | Internet of Things | SAS Events
Victoria Silva 0
Kim Kuster fala sobre Agent Gaming e casos de sucesso em palestra no Insurance Summit 2021

Na palestra “Agent Gaming no setor de Seguros”, Kim Kuster, consultora de negócios em Inteligência de Segurança do SAS, explicou o que é agent gaming e como a prática impacta na área de seguros. Além disso, mostrou alguns casos de sucesso no combate a esse tipo de fraude e fez

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Data Visualization | Internet of Things | SAS Events
Victoria Silva 0
SAS Global Forum 2021: SAS anuncia expansão do suporte para nuvens AWS e Google Cloud

A decisão de expansão do suporte nativo em nuvem visa democratizar, cada vez mais, o uso do analytics Em sua 21ª edição, o SAS Global Forum 2021 teve início hoje e irá até o dia 20 de maio, de modo virtual e gratuito. Na sessão de abertura, Dr. Jim Goodnight,

Advanced Analytics | Analytics | Internet of Things
SAS Colombia 0
Analítica, operadores de telecomunicaciones y 5G: una combinación necesaria

En la actualidad, la industria de las telecomunicaciones enfrenta uno de los mayores desafíos de su historia y al mismo tiempo una de las mejores oportunidades. Se trata de la transición a la quinta generación de las comunicaciones móviles, la tecnología 5G, la cual ya está presente en al menos 40 países,

Advanced Analytics | Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Blanca González 0
La ciencia de datos en el trayecto hacia la nueva normalidad

La ciencia de datos nos está ayudando a entender y, sobre todo, a proponer soluciones viables para los problemas más complejos que como sociedad e industria enfrentamos actualmente. Sin importar el perfil o sector de las organizaciones, las áreas de TI han encontrado en la ciencia de datos una alternativa

Advanced Analytics | Analytics | Internet of Things | Machine Learning
Bruno Maia 0
Cuatro puntos importantes en el uso de la analítica en la crisis del COVID-19

Las soluciones analíticas son muy importantes justo en el momento que vivimos. Tanto en la lucha directa contra la proliferación del virus como en la planificación operativa de los gobiernos y las instituciones de salud, es el instrumento que permite a las empresas enfrentar la crisis económica que surgirá como

Advanced Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Artificial IoT – Com o relançamento da atividade económica numa fase pós-Covid19, como poderemos alavancar o IoT para tornarmos as nossas empresas fabris mais eficientes.

Com o início do “desconfinamento”, a reabertura das empresas fabris e a entrada faseada em produção, esta é também uma altura importante para pensarmos em como tornar as nossas empresas mais eficientes e em alavancar investimentos efetuados anteriormente. Numa fase em que ainda não estamos a produzir a 100%, a

Advanced Analytics | Analytics | Data Management | Internet of Things | Learn SAS
Oguz Bayrakdar 0
Perde arkası: Bir analitik mimarına sıkça gelen teknik sorular

Teknik mimari çeşitli bir konudur- ancak bazı sorular tekrar tekrar gündeme gelir. Altyapıyı, açık kaynak politikasını, IoT veri yönetimini, paydaş katılımını kapsayan geniş yelpazenin tamamı, kurumsal mimarların oynadığı rolün giderek daha önemli bir hale geldiğine işaret ediyor. Bu yazımda son 12 ay boyunca en sık sorulan on soru ve müşterilerime

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Data Visualization | Internet of Things | Machine Learning | Work & Life at SAS
小林 泉 0
SAS社員としての誇りーミツバチ・森林・絶滅危惧種の保護や医療への貢献にAI/アナリティクスを活用

SASの一つの顔は、アナリティクスで営利目的の意思決定を支援 筆者は、SAS社員として、20年以上に渡りアナリティクスおよびAIで企業・組織を支援してきました。 金融機関における、リスク管理や債権回収の最適化 通信業における、顧客LTV最大化、ネットワーク最適化やマーケティング活動の最適化 製造業における、需要予測、在庫最適化、製造品質の向上や調達最適化 流通・小売業における、需要予測やサプライチェーン最適化 運輸業における、輸送最適化や料金最適化 ライフサイエンス・製薬企業における、業務の最適化 官公庁における、市民サービス向上のための不正検知 など、様々な業種・業務においてアナリティクスの適用によるお客様のビジネス課題の解決に携わってきました。営利目的(ここでは市民サービスの向上も含めることにします)の企業・組織におけるアナリティクスの活用目的は主に以下の3つに集約されます。 収益(売り上げ)の増大 コストの低減 リスク管理 アナリティクスは、いわゆる「データ分析」を手段とし、過去起きたことを把握して問題を定義し、次に将来を予測し、様々な選択肢の中から最適な予測に基づいて意思決定をしていくことになりますが、その過程の中で、起きてほしい事象を予測して促進したり、起きてほしくない事象を予測して防いだり、その予測のばらつきを管理したりということを行っていきます。 このような営利目的でのアナリティクスの活用はSASという会社が誕生した40年以上前から行われており、基本的な活用フレームワークは変わっていません。IT技術の進化によって、利用可能なデータの種類や大きさが、増えてきただけにすぎないと言えます。例えば、昨今のAIブームの代表格であるディープラーニングですが、ディープラーニングという処理方式の進化と、GPUという処理機械の進化によって、非構造化データをより良く構造化しているものであり、もちろんモデリング時のパラメータ推定値は何十億倍にはなっていますが、モデリングのための1データソースにすぎません。もう少しするとディープラーニングも使いやすくなり、他の手法同様、それを使いこなすあるいは手法を発展させることに時間を費やすフェーズから、(中身を気にせず)使いこなせてあたりまえの時代になるのではないでしょうか。 SASのもう一つの顔、そして、SAS社員としての誇り、Data for Goodへのアナリティクスの適用 前置きが長くなりましたが、SAS社員としてアナリティクスに携わってきた中で幸運だったのは、データの管理、統計解析、機械学習、AI技術と、それを生かすためのアプリケーション化、そのためのツール、学習方法や、ビジネス価値を創出するための方法論や無数の事例に日常的に囲まれていたことだと思います。それにより、それら手段や適用可能性そのものを学習したり模索することではなく、その先の「どんな価値創出を成すか?」「様々な問題がある中で優先順位の高い解くべき問題はなにか?」という観点に時間というリソースを費やすことができていることだと思います。そのような日常の仕事環境においては、アナリティクスの活用を営利目的だけではなく、非営利目的の社会課題の解決に役立てるというのは企業の社会的責任を果たす観点においても必然であり、Data for Goodの取り組みとしてSAS社がユニークに貢献できることであり、SAS社員として誇れるところだと考えています。 最終的に成果を左右するのは「データ」 そして、もう一つの真実に我々は常に直面します。クラウド・テクノロジー、機械学習、ディープラーニングなどの処理テクノロジーがどんなに進歩しようともアナリティクス/AIによって得られる成果を左右するのは「データ」です。どのようなデータから学習するかによって結果は決まってきます。 IoT技術で収集したセンサーデータは知りたい「モノ」の真実を表しているだろうか? 学習データに付与されたラベル情報は正確だろうか? 学習データは目的を達成するために必要な集合だろうか? そのデータは顧客の心理や従業員の心理をどこまで忠実に表しているだろうか? 特に、Data for Goodのチャレンジはまさにそのデータ収集からスタートします。ほとんどの場合、データは目的に対して収集する必要があります。そして、下記の取り組みのうち2つはまさに、我々一人一人が参加できる、市民によるデータサイエンス活動として、AI/アナリティクスの心臓部分であるデータをクラウドソーシングによって作り上げるプロジェクトです。 Data for Good: 人間社会に大きな影響を及ぼすミツバチの社会をより良くする 概要はこちらのプレスリリース「SAS、高度なアナリティクスと機械学習を通じて健康なミツバチの個体数を増大(日本語)」をご参照ください。 ミツバチは、人間の食糧に直接用いられる植物種全体の75%近くに関して受粉を行っていますが、ミツバチのコロニーの数は減少しており、人類の食糧供給の壊滅的な損失につながる可能性があります。この取り組みでは、IoT, 機械学習, AI技術, ビジュアライゼーションなどSAS のテクノロジーを活用し、ミツバチの個体数の保全/保護する様々なプロジェクトを推進しています。この取り組みは以下の3つのプロジェクトから成り立っています。 ミツバチの群れの健康を非侵襲的に監視 SASのIoT部門の研究者は、SAS Event Stream ProcessingおよびSAS Viyaソフトウェアで提供されているデジタル信号処理ツールと機械学習アルゴリズムを用いて、ミツバチの巣箱の状態をリアルタイムで非侵襲的に追跡するために、生物音響監視システムを開発しています。このシステムによって養蜂家は、コロニーの失敗につながりかねない巣箱の問題を効果的に理解し、予測できるようになります。 関連ページ:5 ways to measure

1 2 3 4 12

Back to Top