Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Advanced Analytics | Analytics | Data Management | Learn SAS | Programming Tips | Students & Educators
0
SASのIn-Database機能のご紹介

1. はじめに 前回投稿しました「SAS/ACCESSのご紹介とSnowflakeとの連携デモ」はご覧になったでしょうか。SASと外部のデータストレージサービスを連携する「SAS/ACCESS」のご紹介と、実際に「Snowflake」というサービスに連携してみました。今回は、その続きとして、10年以上前からビッグデータ・アナリティクスの基本アーキテクチャである、In-Database機能の代表的な機能である、SQLパススルーという機能をご説明し、デモを準備しました。 2. SQLパススルーについて SAS/ACCESS がインストールされている場合、SQLパススルーを使用してデータストレージサービスにクエリできます。接続方法に応じてSQLパススルーは、「暗黙的パススルー」と「明示的パススルー」に分けることができます。 暗黙的パススルーの価値は、作成したSASコードが自動的にデータストレージサービスが処理できるSQLに変換され、そのSQLをデータストレージサービス側に与えることにあります。ですので、SASで実行されたSQLやSASプロシジャに指定されたWHERE句など、可能な限りデータストレージサービス側で処理を行い、結果だけをSAS側に転送することが可能です。一方、明示的パススルーの場合には、DB依存のSQLを明示的に記述することできます。暗黙的パススルーと明示的パススルーについてまとめた表を下に記載していますので、ご覧ください。今回は、暗黙的パススルーについて詳しくご紹介したいと思います。   ▲SAS CommunityでSQL Pass throughについて質問するユーザー 暗黙的パススルーを使用する方が良いか、明示的パススルーを使用するのが良いのか気になるかと思います。実はこのトピックは、SAS Communityでもよく見られ、SAS/ ACCESSを使用している全世界のユーザーにとっても気になる質問です。どちらを使用するかは、どこに基準を置くか、また、SASとデータストレージサービスの環境のスペックによって異なると思います。ですので、皆さんもこのような疑問が生じた場合は、SASに相談してみてはいかがでしょうか。   3. 暗黙的パススルーのデモ 3-1. データの紹介とデモの概要 今回のデモのために、「pets」と「owners」という名前で2つのテーブルをデータストレージサービス(今回は、Snowflake)側に事前に保存しておきました。 「pets」テーブルには、3つのカラムがあります。 Id: ペット固有のid Name: ペットの名前 Type: ペットの種類(犬、猫、その他) Id Name Type 1 オオビ 犬 2 ローザ 猫 3 ワンチャン その他 … … …   もう1つのテーブル「owners」にも3つのカラムがあります。 Id: オーナー固有のid Name: オーナーの名前

Analytics | Data for Good | Students & Educators
Jen Sabourin 0
Beware of data shared via social media - get the facts

Editor's note: This blog post is part of a series of posts, originally published here by our partner News Literacy Project, exploring the role of data in understanding our world. Like infographics, social media and other forms of user-generated content pose unique challenges regarding data. Many news outlets and journalists have checks and balances

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Data Visualization
Charlie Chase 0
SAS and C.H. Robinson are rewriting the rules of transportation planning and management

What if you had a technology solution that creates a real-time link between the customer demand signal and what's happening on the ground? What if plans that are being steered centrally could  finally be connected to every shipping lane, while simultaneously, creating cost saving carrier adjustments? The first-of-its kind integration

Analytics
Jihye Yoo 0
2021년 주목해야 할 데이터 분석 8대 키워드

지난해는 전례없는 코로나19 대유행으로 전 세계의 각국 정부 및 기업은 코로나19로 인한 위기를 극복하고자 디지털 트랜스포메이션을 통한 혁신을 가속화한 한 해였습니다. 불확실성 속에 찾아온 2021년, SAS의 여러 전문가들은 2021년 데이터 분석 트렌드를 인공지능(AI), 클라우드, 백신 등의 키워드를 통해 전망했습니다. 2021년 주목해야 할 데이터 분석 8가지 트렌드를 소개합니다. 기업의 임원들이 AI를

Analytics
Jihye Yoo 0
SAS, Boemska 인수 및 새로운 CTO 임명

SAS가 클라우드 시장 및 타사 애플리케이션 등에 AI 접목을 촉진하기 위해 로우코드/노코드 애플리케이션 배포 및 분석 워크로드 관리 전문 영국 비상장 회사 보엠스카(Boemska)사를 인수했습니다. SAS는 이번 인수로 획득한 기술을 SAS Viya에 적용해 고객의 클라우드 분석 관련 비용을 절감하고, 모델을 모바일 및 엔터프라이즈 앱 등에 이식할 수 있게 될 예정입니다. 이를

Analytics
Ketil Kristensen 0
How do you adapt your insurance pricing strategy in the face of increased price competition?

Many countries in Europe have in previous years experienced increased price competition for general insurance products. Especially in Southern Europe, the competition has been very fierce, fueled by online price comparison websites. In Spain, Portugal and Greece, there has been a substantial drop in average premiums for products like motor,

Analytics
Mike Gilliland 0
Preview of Foresight (Winter 2021)

Through the M4 and M5 competitions, we've seen the promising performance of machine learning approaches in generating forecasts. The SAS whitepaper "Assisted Demand Planning Using Machine Learning for CPG and Retail" describes a role for ML in augmenting the demand planning by guiding the review and override of statistical forecasts.

Analytics | Artificial Intelligence
Sylvie Faucillon 0
Transformation digitale dans l’industrie pharmaceutique : les clés d’une accélération réussie.

Jamais l’industrie pharmaceutique et le secteur de la santé n’ont été l’objet d’autant d’attention de la part des professionnels certes, mais aussi des médias, des non-professionnels, malades ou non malades, internautes. Le monde entier à les yeux rivés sur chaque post, publication, innovation, news, fakes news. De la façon de

Analytics | Artificial Intelligence
Tunay Gunes 0
Uydu Verileri ve Yapay Zeka

Yazarlar: Kağan Şen & Tunay Güneş Teknolojinin gün geçtikçe ilerlemesi ile birlikte, uyduların kullanımı ileri teknoloji gerektiren alanlardan daha günlük alanlara doğru ilerlemeye başlamıştır. İlk başlarda haberleşme ve astronomi uyduları bu alanda daha çok kullanılırken, günümüzde meteoroloji uyduları, keşif (casus) uydular, seyir (navigasyon) uyduları, gözlem uyduları oldukça yaygın kullanılmaya başlanmıştır.

Advanced Analytics | Analytics | Artificial Intelligence
Kagan Sen 0
2021 yılında veri analitiğine yön verecek 10 trend

Herkes için analitik Analitik platformlarının gelişmesiyle beraber veri analizi ve ileri analitik tekniklerini kullanmak için kod yazma ihtiyacının azaldığını görüyoruz. İleri analitik tekniklerinin yolculuğu, algoritmaları programlama zorunluluğuyla başladı. Bu yolculuk, kütüphaneleştirilen algoritmalarla devam etti ve sadece bu kütüphanelerdeki fonksiyonları kullanarak algoritmaları kendimizin yazma ihtiyacının ortadan kalktığı bir yolda ilerledi. Şu

Analytics | Risk Management
DooHo Lee 0
코로나 시대, 은행의 리스크 관리

코로나19가 광범위하게 확산되면서 생산활동 중단, 소비 감소, 교역 감소 등 세계 경제에 심각한 타격이 이어지고 있습니다. 이 충격파를 최대한 완화하기 위해 각국 정부는 다양한 재정적 지원을 투입하고 있습니다. 그럼에도 대부분의 기업과 개인은 코로나19로 경제적 어려움을 겪고 있으며, 이로 인해 은행에서는 다음과 같은 과제에 직면하고 있습니다. 여신관리 코로나19의 영향을 가장 크고

1 43 44 45 46 47 135

Back to Top