Move beyond spreadsheets to data mining, forecasting, optimization – and more
Resilienz-Selbsttest: Fragenkatalog um eine grobe Selbst-Einschätzung zu bekommen, wie es um die Widerstandsfähigkeit bestellt ist.
Move beyond spreadsheets to data mining, forecasting, optimization – and more
Resilienz-Selbsttest: Fragenkatalog um eine grobe Selbst-Einschätzung zu bekommen, wie es um die Widerstandsfähigkeit bestellt ist.
In her first blog post, SAS' Mu He shows you how to train a convolutional neural network that can accurately detect patients with COVID-19 using the transfer learning technique.
La ciencia ficción ha utilizado la premisa de que existen universos paralelos en los que se viven realidades distintas, detonadas por decisiones o eventos excepcionales. En uno de ellos, los personajes estarían experimentando cosas únicas y distintas a las de otra dimensión que corre a la par. Los protagonistas de
Día a día, se hace más visible la relevancia de que la economía mundial sea más sustentable en todos sus sectores. Uno de los principales elementos de esta ecuación, es en el sector financiero. Esto es fundamental porque las consecuencias que se generen desde esta industria son altamente significativas e
Desde que en 2019 se constituyese la Red de Destinos Turísticos Inteligentes (RDI), el camino recorrido por la industria del turismo, capital para la economía española, no ha sido fácil, con una pandemia que dió de lleno en la línea de flotación de este sector. Hoy, el panorama comienza a
Las organizaciones enfrentan, cada vez más, el desafío de prevenir y detectar los delitos financieros cometidos por sus clientes o usuarios. A menudo, estos delitos son el resultado de la combinación de diferentes modus operandi utilizados por los delincuentes. La falta de un sistema transversal que permita conectar la información
SAS' Scott Pope introduces you to an action set in SAS Viya called dlModelZoo that supports importing PyTorch models.
Insurers, chief financial officers (CFOs) and actuaries will face overwhelming changes and challenges in the year ahead. These include compliance with new regulatory and solvency standards, pricing insurance premiums in line with inflation and other economic factors, addressing climate risk and ESG concerns, and adapting to new technologies. The impact
In 2023, businesses recognize the need to be resilient. With the global disruptions we’ve faced over the last few years, and continuing disruptions and instabilities, the need for organizational resilience has never been clearer. By building resiliency, organizations can adapt to changing circumstances, maintain stability and minimize damage from unexpected events.
La información que los organismos policiales almacenan sobre detenciones o incidentes delictivos, así como los avisos a los departamentos de policía, tienen un valor enorme para resolver futuros casos que se pueden plantear. Analizar manualmente esta gran cantidad de datos en busca de patrones puede llevar mucho tiempo y sus
SAS' Brandon Reese the EURO Meets NeurIPS 2022 Vehicle Routing Competition, which combined efforts of operations research and machine learning experts.
Las organizaciones de todos los sectores iniciaron un año 2023 más conscientes de que el entorno económico, político y social no permanece estático, y que las condiciones bajo las que operan a diario pueden cambiar con relativa frecuencia. Han aprendido a ser resilientes y prestar atención a lo que sucede
Las organizaciones saben que este proceso es una tarea continua y una condición para seguir compitiendo y creciendo en sus respectivos mercados. Cómo abordar el proceso de modernización, sin embargo, requiere una planeación minuciosa, y no está exento de desafíos. Más aún, cuando involucra la adopción de tecnologías y procesos
SAS' Ali Dixon and Mary Osborne reveal why a BERT-based classifier is now part of our natural language processing capabilities of SAS Viya.
With an industry skills gap upon us, an estimated 85% of Fortune 500 organisations are still looking for talent today. SAS remains committed to helping university students with SAS® skills gain work placement with SAS customers today – as they’ve done for over a decade. Westpac is Australia’s first bank
Het tegengaan van verspilling in Lean Manufacturing biedt veel potentieel om efficiënter, kostenbesparend en duurzamer te werken. Data-analyse kan hierbij helpen. De term ‘Lean Manufacturing’ verwijst naar een filosofie die ooit bij Toyota is ontstaan. Het aanpakken van de verschillende vormen van verspilling in de industrie speelt bij deze manier
Las tecnologías de la información (TI) son un gran habilitador para realizar nuestras tareas diarias en diferentes áreas y han permitido que las mujeres encuentren en ellas alternativas para su desarrollo académico y crecimiento profesional. Un gran ejemplo es en el área de analítica de datos en donde, gracias a
Editor's note: This article follows Curious about ChatGPT: Exploring the origins of generative AI and natural language processing. As ChatGPT has entered the scene, many fears and uncertainties have been expressed by those working in education at all levels. Educators worry about cheating and rightly so. ChatGPT can do everything
Actualmente los datos de la gran distribución no forman parte de la cuenta de resultados, pero es el activo que deberían monetizar con mayor urgencia. Gracias a este análisis avanzado se puede mejorar el margen de la compañía y aumentar la eficiencia de diferentes procesos. En este artículo vamos a
Pocos mercados requieren tanta inversión y enfrentan tanta competencia como el de las telecomunicaciones, un nicho en el que sus desafíos la convierten en un mercado ideal para las soluciones de analítica. Veamos porqué. En general, las telecomunicaciones están llenas de retos. Pero en un mercado amplio como lo
SAS' Mary Carter details challenges and benefits of accelerating the delivery of SAS software.
Si bien los datos financieros se han utilizado tradicionalmente para evaluar y comparar el desempeño de las empresas, recientemente se ha sumado un nuevo criterio que va ganando relevancia: la información sobre iniciativas ambientales, sociales y de gobierno (ESG, por sus siglas en inglés), que se está utilizando para evaluar
Mesmo após o período mais intenso da pandemia, é exponencial o aumento do número de pessoas que continuam a fazer compras ou acessar serviços financeiros diversos por meio de sites e aplicativos. A Pesquisa FEBRABAN de Tecnologia Bancária 2022 revela que os canais digitais somaram cerca de 80 bilhões de
Origem e benefícios do Laboratório Científico criado pelo SAS, na Faculdade de Ciências da Universidade de Lisboa. No final do ano passado, o SAS Portugal anunciou a criação de um laboratório científico - designado SAS-FCUL Lab - na FCUL - Faculdade de Ciências da Universidade de Lisboa, com o objetivo
La experiencia de compra de millones de personas ha evolucionado recientemente hacia nuevas vertientes. Hoy, a diferencia del modelo tradicional de acudir físicamente a una atienda, recorrer los pasillos, pagar y volver a casa, con el avance de la digitalización y el crecimiento de aplicaciones, surge un nuevo modelo que
Ah, Valentine’s Day. Whether you love or loathe this sweet holiday, you can’t miss it if you live in the United States. Seemingly by magic, stores begin filling with red and pink treats right after Christmas. And while you might be astonished by the quick switch in your favorite store,
近年、AI/アナリティクス市場に巨大ITベンダーが参入してきたことと、データサイエンティストがその存在感を高めようとしてきたことがあいまって、「予測」、「予測モデル」あるいは「AI予測」、「AIモデル」という言葉が、この市場で一般的になってきました。ビジネスにおいて、データ分析による洞察に基づいてよりよい意思決定と自動化を行うことーこれを「アナリティクス」と言いますーは、筆者がこの世界に足を踏み入れた20年以上前よりもっと前から、一部の「データを武器とする企業」において行われていました。それがより多くの企業に広まってきたということです。 今回は、より多くの方が「予測」について理解を深めてきているところで、その「予測」をもう少し深く理解し、近年の世界情勢において、大きく変化が求められている業界の1つである、流通小売業や製造業のサプライチェーン課題にフォーカスしたいと思います。まさにいま、サプライチェーンの大きな課題はレジリエンス強化です。そのための解決ソリューションとしてデジタルツインが注目されていますが、デジタルツインで何をすべきかを適切に見極めるために必要なおさらいとして、そもそも不確実性とは?について頭の中を整理したいと思います。 アナリティクスとは将来の不確実性に対して勇気を出して踏み出すーつまり行動するーことである。 「予測」という概念が広まることで、「予測」が確率的であるという認知も正しく広まってきました。需要予測値は確率的なものであるため、予測値そのものだけではなく安全在庫を計算するためにその確率を活用し、解約予兆、商品のレコメンデーションへの反応、不正検知、異常検知や歩留まりなど、アナリティクスつまり予測モデルを意思決定に適用するほとんどの意思決定は、すべて確率的なものです。よく見る予測モデル以外でも同様です。最適化も多くの場合その入力となる情報が確率的にばらついているケースが多いですし、近年、古典的な最適化手法が当てはまりずらいビジネス課題、例えばサプライチェーンの最適化、リアルタイムの配送スケジューリングなどの課題やカスタマージャーニーの最適化課題に対して適用される強化学習のアプローチにおいても、将来の報酬を確率的に計算して、目の前の一手を決めているといえます。 ここで唐突に余談ですが、リスクという言葉は日本語だとネガティブな意味に使われることが多いですが、本来はポジティブでもネガティブでもなく、単に確率的なバラツキを意味しています。なのでリスクを管理するということは、単に将来に対して確率的なバラツキを特定し意思決定の要因に組み込むということです。つまりこれはアナリティクスと同義です。なので、アナリティクスとアナリシスは語感は似ていますが、意味はだいぶ異なるということになります。 不確実性の1つは過去の経験から得られる確率 これは、上述した「リスク」です。どのような事象が起きたか?それが起こる確率はどれくらいか?そのインパクトはどの程度か?などについて過去の経験に基づいて洞察が得られるものです。例えば、輸送の遅れ、需要のバラツキ、ITシステムの障害、消費者の購買行動におけるバラツキ、設備などの停止、部品の故障率や製造品質などです。このような不確実性は過去のデータを分析することで予測可能です。このタイプの不確実性を今回は、「予測可能な不確実性」と呼ぶことにします。この「予測可能な不確実性」への対処に関しては、長年の経験から、多くのケースにおいて理論が確立してアナリティクスのベストプラクティスにすでに組み込まれています。 近年ニーズが増えてきたもう一つの不確実性への対応 こちらはずばり、過去に起きてないために予測することが困難な事象です。例えば、COVID-19、自然災害、特定地域での紛争や各国の政治情勢の変化などです。海洋の変化が予測とは大きく異なり漁獲高が計画と大きく乖離して輸出の計画が崩れて困っているという事例も該当します。特にサプライチェーン管理が必要な多くの企業は、近年特にこのような事象により、サプライチェーンが突如として混乱に見舞われるという経験をされているでしょう。このような不確実性は、過去に起きてない事象であっても、あらゆる情報を収集することで将来の起こる可能性についての洞察をある程度得ることができることもあります。ソーシャルメディアを分析することで、その国の経済の先行指標としての洞察を得たり、政治的な変化の予兆につなげるという活用方法も実際にされてきています。しかし、自社のサプライチェーンに関わる世界中のあらゆる状況に対して調べつくすということは、ほとんどの企業にとっては投資対効果的に見合わないと思います。したがって、サプライチェーンにおいては、そのような事象によって混乱した状態からなるべく早く回復するために、自社のサプライチェーンの脆弱性を理解し、起こりうるシナリオを想定して、それに備えることに投資の目を向けます。このようなタイプの不確実性を今回は、「予測困難な不確実性」と呼ぶことにします。 デジタルツインでは二つの不確実性への対応が価値をもたらす デジタルツインですが、そもそもビジネスをデータに基づいた意思決定にしている世界は部分的には47年前からデジタルツインだと言えます(ちょっと強引すぎますかね)。SASは1976年に穀物の収穫高の予測を電子的統計手法で行ったのがスタートです。ITの進化、IOT技術の進化に伴いより多くのデータが観測・収集できるようになり、ビジネスの一部だけでなくより全体がデータの世界で表現できる様になりました。近年ではそれを「デジタルツイン」と呼んでいます。サプライチェーンのデジタルツインを実現して、皆様はどんな課題を解決したいでしょうか?今回取り上げた「予測可能な不確実性」と「予測不可能な不確実性」を理解することで、デジタルツインを活用した「現実世界のよりよい理解」、「その理解に基づく意思決定」、「シナリオ分析」や「シミュレーション」を適切に行うことができるようになり、将来起こりうることに対して、よりよい対処が可能となるでしょう。 この話の続きが気になる方へ SASのデジタルツインの最新の取り組みについてはまずはこちらのプレスリリースをご覧ください。 また、デジタルツインやシミュレーションについて他のユースケースなどご興味ある方は、こちらのCosmo Tech社の(英語)もお役に立つと思います。
NeurIPS 2022 allowed researchers and practitioners to share progress and brainstorm new ideas for advancing machine learning and its related fields.
You're not alone if you’re still seeing local grocery stores with empty shelves. Food shortages are still lingering in 2023. Increases in consumer demand, labor shortages and shipping capacity restraints continue to interrupt supply chains, particularly for grocery retailers. These problems have persisted throughout the pandemic, as seen with the shortages
“El fraude ya no es realmente el problema. Cuando los clientes nos preguntan sobre las novedades y tendencias en esta materia, les hablamos de algo que estamos evidenciado: ya no se trata de resolver temas de fraude, se trata de que las organizaciones puedan realmente autenticar, verificar y validar que