A conversation with my mentor has always stuck in my mind: Teaching is not about me, directly, it’s about serving my students. Teaching is about providing each of my students what they need to learn the material and to grow academically and as an individual. Teaching is about student learning.
Uncategorized
Data scientists need good skills in communication, data mining, data wrangling and more. Joyce Norris-Montanari explains.
When a graph includes several markers or line styles, it is often useful to create a legend that explains the relationship between the data and the symbols, color, and line styles in the graph. The SGPLOT procedure does a good job of automatically creating and placing a legend for most
머신러닝의 블랙 박스 모델을 소개하는 첫 번째 블로그와 두 번째 블로그를 통해서 머신러닝 모델의 복잡성과 머신러닝의 뛰어난 예측 결과를 활용할 수 있는 해석력이 필요한 이유, 적용 분야에 대해서 소개해드렸는데요. 이번에는 기업 실무자 입장에서 SAS 비주얼 데이터 마이닝 앤드 머신러닝(SAS Visual Data Mining and Machine Learning)을 활용한 SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360)에서 해석 기법과
Whether you're reading industry articles about smart tags or analyst reports about inventory tracking, you've probably noticed an uptick in coverage on the adoption of IoT (and RFID) in retail. Since I've been following these topics for awhile, I've decided to dedicate a series of posts on the ways IoT can be used
In August 2018, Hurricane Florence came on shore in North Carolina. Much of the damage was from flooding because the storm moved slowly over North and South Carolina. Parts of North Carolina had over 30 inches of rain from the storm, and this caused many of North Carolina’s rivers to
La prova definitiva per poter definire una tecnologia “mainstream” consiste nel verificare che essa venga ampiamente utilizzata in tutta l'azienda, dalle funzioni a servizio del cliente alle attività di back-office. Gli analytics sono stati a lungo incentrati sul cliente ed ampiamente utilizzati anche per le prestazioni individuali, ad esempio, dalle
Find out what SAS Global Forum 2019 conference chair MaryAnne DePesquo says about the upcoming conference in Dallas.
I first used telemedicine (the remote diagnosis and treatment of patients by means of telecommunications technology) in the mid-90s when I was working as an on-call CT technician in the UK. We used a modem to transfer head trauma scans to the local neurology center for assessment so that the
The opioid epidemic continues to be one of the largest challenges facing the United States. In 2016, more than 42,000 Americans died from opioid overdoses, and that number continues to climb. Recent data shows that more than 130 people die every day in the United States after overdosing on opioids,
I remember the first time I used PROC GLM in SAS to include a classification effect in a regression model. I thought I had done something wrong because the parameter estimates table was followed by a scary-looking note: Note: The X'X matrix has been found to be singular, and a
Jim Harris says data stewards are essential to analytics, providing life cycle management for data across the enterprise.
초강력 허리케인 '플로렌스’ 미국 남동부 지역을 강타하다 지난 9월, 대서양에서 발생한 초강력 허리케인 '플로렌스(Florence)'가 미국 노스캐롤라이나주를 비롯한 미국 남동부 지역을 강타했습니다. 하루 무려에 762mm 기록적 물폭탄이 내리면서 허리케인으로 인한 재산 피해액은 총 170~220억달러(약 19조~25조원) 인것으로 추정되기도 했는데요. 허리케인 플로렌스가 쓸고 간 자리에는 집, 일자리, 건물, 학교 등을 잃은 이재민들이 남았습니다.
지난 'SAS 커스터머 인텔리전스 360(SAS Customer Intelligence 360): 머신러닝의 블랙 박스 모델이란’ 블로그에서 머신러닝 모델은 다면적이고 계속 진화하는 주제라고 소개해드린 바 있는데요. 오늘은 머신러닝 모델의 해석력(Interpretability)에 대해 자세히 살펴보고자 합니다. 머신러닝 모델은 놀라운 예측 능력을 제공하지만 매우 복잡하여 이해하기 쉽지 않습니다. 또한 머신러닝 모델은 예측한 결과에 대한 명확한 설명도 제공하지 않기
Do you remember The Matrix movies, that started coming out in 1999? Hopefully this movie franchise didn't give you a fear of virtual reality and AI. The thing I remember most from the movie was the really cool slow-motion video effects (from multiple angles) in the fight scenes. And the
As analíticas vão ser imprescindíveis no futuro. Está é a opinião generalizada da maioria dos gestores. No entanto um estudo levado a cabo pelo SAS sobre Plataforma Analítica - “Here and Now: the need for an analytics platform”, revelou que apenas 35% está efectivamente com projectos de implementação ao nível
Joseph Woodside discusses the evolution of digital transformation in healthcare in three eras.
Last week my colleague, Robert Allison, visualized data regarding immunization rates for kindergarten classes in North Carolina. One of his graphs was a scatter plot that displayed the proportion of unimmunized students versus the size of the class for 1,885 kindergarten classes in NC. This scatter plot is the basis
만약 나의 주치의가 내 디지털 트윈(Digital Twin)을 만들어 실시간으로 나의 상황을 다양한 센서 데이터 등을 통해 업데이트 받을 수 있다면 어떨까요? 현실세계의 기계나 장비, 사물 등을 컴퓨터 속 가상세계에 구현한 디지털 트윈을 통해 몸 속의 잠재적인 질병에 대한 신호를 미리 받을 수 있을지도 모릅니다. 디지털 트윈이 암 관련 질병을 미리
PythonからSAS Viyaの機能を利用するための基本パッケージであるSWATと、よりハイレベルなPython向けAPIパッケージであるDLPyを使用して、Jupyter NotebookからPythonでSAS Viyaの機能を使用して一般物体検出(Object Detection)を試してみました。 今回は、弊社で用意した数枚の画像データを使用して、処理の流れを確認するだけなので、精度に関しては度外視です。 大まかな処理の流れは以下の通りです。 1.必要なパッケージ(ライブラリ)のインポートとセッションの作成 2.一般物体検出向け学習用データの作成 3.モデル構造の定義 4.モデル生成(学習) 5.物体検出(スコアリング) 1.必要なパッケージ(ライブラリ)のインポートとセッションの作成 swatやdlpyなど、必要なパッケージをインポートします。 from swat import * import sys sys.path.append(dlpy_path) from dlpy.model import * from dlpy.layers import * from dlpy.applications import * from dlpy.utils import * from dlpy.images import ImageTable from dlpy.splitting import two_way_split from dlpy.blocks import *
This week I noticed that they've started building the lot where they sell Christmas trees near SAS (at the intersection of Maynard & Reedy Creek Rd). They put up a nice rustic wooden fence, and lights, and maybe even a fire pit to keep their workers warm. They sell some
Burger and fries, wine and cheese, peanut butter and jelly … some things just go better together. For organizations embarking on digital transformation, AI and IoT just go better together. These two distinct technologies; AI and IoT (or AIoT) are a natural fit. To take an analogy from the human
A data analyst asked how to compute parameter estimates in a linear regression model when the underlying data matrix is rank deficient. This situation can occur if one of the variables in the regression is a linear combination of other variables. It also occurs when you use the GLM parameterization
I recently read an article that said a school in Asheville, North Carolina had the worst chickenpox outbreak in the state in 2 decades. The article was interesting, and it also let me know I had a hole in my knowledge ... "What?!? - There's a chickenpox vaccine?!?" When I
은행은 금융위기와 같은 경제적 충격이 외부에서 발생했을 때 채무 불이행에 따른 손실 규모를 파악하고 보유하고 있는 위험자산에 대한 포트폴리오 변화를 빠르게 확인할 수 있어야 하는데요. 특히 글로벌 금융위기 이후 은행권을 대상으로 글로벌 경제 위기에 견딜 수 있는 재무 건전성 역량을 문서화하는 규제요구가 높아지면서 대형 투자은행들이 경제 상황이 극도로 나빠졌을 때
What is object detection? Object detection, a subset of computer vision, is an automated method for locating interesting objects in an image with respect to the background. For example, Figure 1 shows two images with objects in the foreground. There is a bird in the left image, while there is a dog
Data management gets lost in the enthusiasm around Artificial intelligence (AI) and machine learning (ML). Not surprising, when it's an algorithm that decides what search results to show you, guides the self-driving cars on the roads, and powers the anti-fraud bots that monitor every credit card transaction we make. Charles
Finanzdienstleister haben aktuell massive Herausforderungen beim Management ihrer Daten: Der Kostendruck zwingt einerseits zu einem hocheffizienten Betrieb („run“). Zugleich wandeln sich andererseits die Prozesse im Business, Stichwort Digitalisierung („change“). Die drückenden Regeln der Aufsicht scheinen sich nicht vereinen zu lassen mit dem Anspruch der Kunden, flexibel, fix und doch datensparsam
Reconsider conventional assumptions about data governance – three suggestions for chief data officers.
머신러닝이 마케팅 생태계 내에서 지속적으로 발전함에 따라 현대화된 알고리즘 접근법의 해석력이 중요해지고 있습니다. 지난 번 게시했던 머신러닝 해석력 관련 블로그에서 인공지능(AI)과 머신러닝을 신뢰하기 위한 필수 조건, 데이터 세트를 이해하고 해석하는 방법, 그리고 머신러닝 모델의 작동 원리에 대한 인사이트를 도출하는 변수를 표시하는 방법에 대해 설명한 바 있는데요. “우리는 머신러닝에 의해 구동되는 애플리케이션에 둘러싸여 있으며,