Auf Twitter bin ich auf den schönen Satz gestoßen, formuliert von Kerem Tomak von der Commerzbank: „When you talk about machine learning and AI you have to talk about the usage of cloud! It´s key enabler of Advanced Analytics and AI. It further means business agility and cost efficiency for
Uncategorized
Et si, en dehors de la nouvelle organisation des moyens de production, la 4ème révolution industrielle induisait également une évolution significative dans la gestion de la connaissance intrinsèque à chaque domaine ? Et si les nouvelles technologies numériques permettaient aux acteurs opérationnels d’accéder simplement à cette connaissance, le plus souvent fruit de méthodes
The past few years, I've created maps showing things you might visit and do during the big SAS Global Forum (SASGF) conference. This year the conference is in Dallas, and ... you guessed it ... I've created a Dallas map! If you're familiar with my previous maps, you know that
What's the impact of using data governance and analytics for the business side of education? It's an interesting question, and during a video interview, Dale Pietrzak, Ed.D.,Former Director of Institutional Effectiveness and Accreditation (IEA) at the University of Idaho shared details on the results they're realizing from using SAS for
This blog post could be subtitled "To Catch a Thief" or maybe "Go ahead. Steal this blog. I dare you."* That's because I've used this technique several times to catch and report other web sites who lift the blog content from blogs.sas.com and present it as their own. Syndicating blog
The number of models used by large operators in the financial sector is increasing by around 10 to 25 percent per year. Most of the new models are designed to meet business needs, such as pricing, the definition of strategic plans and the management of liquidity. Some, though, are for
データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第三回が3/19(火)に開催されました。第一回・第二回に引き続き今回も多くの学生の皆様に参加していただき、有意義なセミナーとなりました。本記事では、当日の様子についてご紹介します。 本セミナーでは、データサイエンティストのキャリアと活躍の場や、ビジネス上でのアナリティクス活用方法について、スピーカーがこれまでの経験をもとにご紹介しました。 SASにおけるデータサイエンティスト はじめに、データサイエンティストのキャリアやスキルについてSAS JapanのSebastian Wikanderより講演を行いました。 前半は、自身のキャリアや経験をもとにした、データサイエンティストのキャリアの紹介です。キャリアの初めはトラックメーカーに就職。様々なビジネスモデルをデータを用いて分析することに魅力とやりがいを感じ、SASに転職しました。SASでの仕事は年齢・学歴・国籍等、多様性があり、より良いパフォーマンスが発揮できます。具体的な仕事例として、大手IT企業の業務プロセス改善プロジェクトと部品メーカーにおけるディープラーニング活用プロジェクトを紹介し、SASと顧客のノウハウを合わせるチームワークの重要性や、過去の学びやスキルをもとに常に新しいチャレンジへと挑戦する楽しさなどを伝えました。 次に、データサイエンティストに必要なスキルの紹介です。核となるデータサイエンススキルの他にも、プログラミングスキル、統計学や機械学習の知識、ビジネス能力、英語力を含むコミュニケーションスキルなど多種多様なスキルが必要だとし、データサイエンティストは事例に合わせて最適なスキルを活用する「スペシャリストよりジェネラリスト」という言葉は印象的でした。 最後にデータサイエンティストのやりがいとして、様々なアプローチの中から一つを選択する「クリエイティブ」な側面、ビジネスとしての「人との関わり」という点、「新たなチャレンジ」を続けワクワクした日々を送れるという点を挙げ、より多くの学生に興味を持って欲しいというメッセージを伝えました。 アナリティクス活用領域の概要 リスク管理 続いて、リスク管理におけるアナリティクスの活用について、SAS Japanの柳による講演です。 最初にビジネスにおけるリスクについて紹介しました。リスクとは「不確実性」であると指摘し、その不確実性を想定の範囲内で「リスク管理」し「収益−損失の最大化」という目的を達成するためにアナリティクスが活用されていると紹介しました。 具体例として、金融機関における「規制対応のリスク管理」と「収益を上げるためのリスク管理」を挙げています。前者は政策等で一定の枠組みが決まっており事象の予測が行いやすく、アナリティクスが最大限活用されています。一方後者は変動が大きく様々なシナリオが想定されるため、経済情勢・社会情勢等に基づいた多様なモデルをもとにシミュレーションを重ね、意思決定の判断基準にしています。 最後に金融機関におけるAIの活用について紹介しました。業務の効率化や人的ミス排除等を目的とした従来のIT化とは異なり、人間では処理できないほど膨大となったデータを扱うために金融機関でAIを導入する動きが進んでいるとのことです。しかし、AIの思考がブラックボックス化され判断の説明可能性が低いという問題点もあり、AIの思考の透明性をどう保証するかが今後の大きな課題の一つであると伝えました。 SASの学生向けData Science 推進活動 最後に、学生のデータサイエンスの学びの場としてData for Good 勉強会とSAS Student Data for Good communityを紹介しました。Data for Goodとは様々な社会問題をデータを用いて解決する取り組みであり、これまでにも世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和をData for Goodの活動具体例として紹介しました。学生が主体となりこの活動をより推進するため、SASでは「Data for Good勉強会」と「SAS Student Data for Good Community」という活動を企画しています。 Data for Good 勉強会とは、SASやData Kind(Data for Goodを推進する社会団体)の実施したData
Jim Harris shares examples of how and why AI applications are dependent on high-quality data.
Hackathons are short-term programming events that use data and analytics to solve real-world challenges. They have been around for a while now, and there is general agreement that they are great opportunities for networking and experimenting. There is also, however, now a growing sense that organisations can use them to
In numerical linear algebra, there are often multiple ways to solve a problem, and each way is useful in various contexts. In fact, one of the challenges in matrix computations is choosing from among different algorithms, which often vary in their use of memory, data access, and speed. This article
The recently released results of a new joint survey from SAS and the Global Association of Risk Professionals (GARP) on the use of AI in risk management makes for very interesting reading. Here are the highlights from the study, which involved more than 2,000 participants from across the global financial
지난 2월, 미국 노스캐롤라이나(NC)주는 SAS 및 InterSystems와 제휴하여 주 정보기술부(North Carolina Department of Information Technology; NC DIT) 산하의 ‘건강 정보 교환 센터(Health Information Exchanges; HIE)’ NC HealthConnex의 현대화 소식을 발표했습니다. NC HealthConnex는 향상된 진료 서비스와 환자의 안전을 지원하고 진료 이전을 용이하게 하며, 주 전역에 걸쳐 4,500개 이상의 의료 시설에 관련
Let’s be blunt. Procurement fraud is a problem. Orders and purchase procedures are one of the most vulnerable areas of corruption. The scale of irregularities and abuse in the procurement area is large. In fact, procurement fraud is the second-biggest economic crime after theft. Estimates suggest that businesses can
Have you ever wondered if love at first sight really exists? And if it exists, what qualities are people drawn too? Watch any romantic comedy and you’ll see this phenomenon play out on the big screen. Which begs the question, “If it can happen to them why not me?” Let’s
Data Scientists verbringen eine Menge Zeit mit Daten. Dabei gilt immer – von der Anwendung von Machine-Learning-Modellen bis hin zum Trainieren von KI-Modellen: Mit der Datenqualität stehen und fallen die Ergebnisse. Analytics und Data Science stellen jedoch nicht nur Ansprüche an Datenqualität. Sie können auch dazu beitragen, diese zu verbessern.
SAS Global Forum 2019 (SGF) is rapidly approaching - and which of the hundreds of presentations are you planning to attend? Well, no matter what types of analyses you perform with SAS software, you'll most likely want to present your findings in a really nice/informative graph! Therefore I highly recommend
Suppose you need to assign 100 patients equally among 3 treatment groups in a clinical study. Obviously, an equal allocation is impossible because the second number does not evenly divide the first, but you can get close by assigning 34 patients to one group and 33 to the others. Mathematically,
Recently, the North Carolina Human Trafficking Commission hosted a regional symposium to help strengthen North Carolina’s multidisciplinary response to human trafficking. One of the speakers shared an anecdote from a busy young woman with kids. She had returned home from work and was preparing for dinner; her young son wanted
Have you ever dreamed of working for a professional sports organization? Do you play fantasy sports leagues and fantasize about owning a real team? Do you follow the news about player drafts and trades, and wish you could influence who your team picks? Well, here’s your chance. The latest SAS
Steht die moderne IT vor einer Herausforderung, greifen Verantwortliche immer öfter auf ein vermeintliches Allheilmittel zurück: die Migration von Lösungen in die Cloud. Doch ist diese Maßnahme tatsächlich die Universallösung? Nun, die Antwort darauf ist ein entschiedenes „Jein“. Analytics-as-a-Service und Analytics in der Cloud sind seit Längerem ein viel diskutiertes
The idea of running software in a self-contained package took off with the launch of Docker in 2013 and has become a hot topic in the application development and DevOps community. In a recent survey by Red Hat, 57 percent of companies questioned said they use containers for some workloads
Changing how we’ve viewed the beautiful game forever. How often have we looked at a game and wondered, “How did he miss that?!” Now, with expected goals (xG) metric, we can really see if our frustration is justified, and perhaps use that to predict future results. The use of analytics
According to the World Cancer Research Fund, Breast cancer is one of the most common cancers worldwide, with 12.3% of new cancer patients in 2018 suffering from breast cancer. Early detection can significantly improve treatment value, however, the interpretation of cancer images heavily depends on the experience of doctors and technicians. The
I recently saw an interesting graph that showed the number of motor vehicle crash deaths has been going down. The graph showed deaths per mile. That's a good statistic, but I wondered whether there were other ways to look at the data? An Interesting Graph Here's the graph, from an
I've previously written about how to deal with nonconvergence when fitting generalized linear regression models. Most generalized linear and mixed models use an iterative optimization process, such as maximum likelihood estimation, to fit parameters. The optimization might not converge, either because the initial guess is poor or because the model
There's been a lot of hype regarding using machine learning (ML) for demand forecasting, and rightfully so, given the advancements in data collection, storage, and processing along with improvements in technology. There's no reason why machine learning can't be utilized as another forecasting method among the collection of forecasting methods
Data scientists spend a lot of their time using data. Data quality is essential for applying machine learning models to solve business questions and training AI models. However, analytics and data science do not just make demands on data quality. They can also contribute a lot to improving the quality
What is that makes some innovations "stick" and others disappear into the ether, never to be seen again? In a high-technology industry, it is tempting to say that the technology simply wasn’t right, or the timing was wrong. However, history suggests that this is probably not the case. Much of the
Many SAS procedures support the BY statement, which enables you to perform an analysis for subgroups of the data set. Although the SAS/IML language does not have a built-in "BY statement," there are various techniques that enable you to perform a BY-group analysis. The two I use most often are
¿Han visto la película Minority Report? En esta se presentan algunas escenas en las cuales John Anderton entra a un centro comercial y mediante el “Sistema de reconocimiento óptico de la ciudad”, la pantalla de publicidad le saluda por el nombre y luego le hace ofrecimientos personalizados de productos. Para