Author

RSS

慶應義塾大学経済学部4年

Data for Good | SAS Events | Students & Educators
0
第二回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”の達成を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティでは生物の絶滅と人類との関係の分析や通勤ラッシュ時の鉄道混雑緩和など、データを活用した社会課題の解決に取り組んでいます。 二回目となる今回の勉強会では、DataKind社の事例から精神疾患に苦しむ人の生活の向上をテーマに、課題の設定方法をメインに学びました。 精神疾患に苦しむ人々に質の高いケアを提供する 今回扱った事例は、Data for Goodを推進する社会団体であるDataKind社とイリノイ州シカゴで精神疾患の患者を支援している非営利団体であるThresholdsが共同で行ったプロジェクトです。 精神疾患の患者が引き起こす傷害事件や、自殺者の増加、子どもの登校拒否など、精神疾患が原因の社会問題はアメリカにも深刻な影響を与えています。Thereholdsは治療機会や住居の提供を通して精神疾患のある人々の支援を行ってきましたが、資金/人手不足により精神疾患患者に質の高いケアを提供することは困難を極めていました。 そこでDatakind社と共同プロジェクトを開始し、「支援を優先すべき患者を把握する」ことで限られたリソースの中で質の高い支援を行うことを目指しました。このプロジェクトでは、実際のアプローチとして 患者データを一括管理できるデータウェアハウスの構築 支援者が使いやすいダッシュボードの作成 患者間のリスクスコアリングのための予測モデリングの基礎の開発 に取り組んでいます。 3の予測モデリングでは、支援を優先すべき患者を予め把握することで問題解決につなげることを目的にしています。今回のプロジェクトで予測モデリングの土台を築き上げられたことから、今後は精神疾患患者の支援に最良な意思決定のサポートができるようになる見込みです。詳しい内容は記事DataKind社の事例紹介(英語)をご覧ください。 解くべき課題を設定する DataKind社は「支援を優先すべき患者を把握する」ことで資金や人手不足の中でも質の高いケアを提供することに挑みました。 では自分たちならこの問題のどの部分に着目して「課題設定」を行い、その課題を解くにはどのようなアプローチが考えられるのか議論しました。 その中で興味深い意見としては、 課題を「精神疾患の早期発見」と設定し、その解決策として「異変に気付きやすい周りの家族・友人が、簡易的に精神疾患をチェックでき、次にとるべき行動を示してくれるアプリケーション」 といったものがありました。 このアプローチは急な病気やけがの際にインターネット上で緊急度を確認できる救急受診ガイド(東京消防庁)と似た発想であり、どちらも限られたリソースを上手く活用するために機械で判断が可能な部分は機械に任せ、人間がより重要な仕事に時間を割けるようにする取り組みといえます。 上記以外にも様々な意見を交わし、課題の設定方法を学びました。 普段私たちは与えられた課題を解くことはあっても、自分たちで課題を設定する機会はあまりないように思えます。しかしデータ分析において課題の設定は非常に重要で、勉強会を通して意見を共有しながら議論を進められたのは、私たちが取り組んでいるプロジェクトを考える上でも参考になりました。 コミュニティメンバー募集中! SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら下記の事項をご記入の上JPNStudentD4G@sas.comまでご連絡ください。 大学名 / 高校名 名前 メールアドレス また、第4回を迎える学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」 は2019年7月25日(木)19:00~ SAS東京本社(六本木ヒルズ11F)にて開催予定です。 現場で活躍されているデータサイエンティストの方々から、具体的なお仕事の内容や学生の内に学ぶべきこと等をお伝えする予定です。 みなさんのご参加お待ちしております。

Data for Good | SAS Events | Students & Educators
0
第一回Data for Good勉強会 活動レポート

SAS Japanでは昨年末より”Data for Good”を目指す学生コミュニティ「SAS Japan Student Data for Good community」を運営しています。このコミュニティでは世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和など、データを活用した社会課題の解決に取り組んでいます。 活動を更に加速させるために、Data for Goodのケーススタディを通じた課題設定・アナリティクスの適用法を学ぶ勉強会を開催しました。 この記事では勉強会の中で取り上げた事例を2つ紹介します。 1.ネパール地震でのIOMによる支援 1つ目の事例はSAS USが国際移住機構(IOM)と協力して行ったネパール地震における復興支援です。 2015年4月25日に起きたネパール地震では約90万棟が全半壊し、多くの住民が仮設キャンプ場での生活を余儀なくされました。IOMは現地でキャンプ場の運営等の支援活動を行っていましたが、6月から始まる本格的な雨季を前に風雨を凌げる住居の提供が喫緊の課題でした。 IOMの要請を受けたSAS USは国連商品貿易統計データベース(UN Comtrade)を利用した各国のトタン板の生産能力を分析し、その結果迅速なトタン板の供給を実現しました。この事例からは次の事が学べます。 データの可視化によって意思決定の支援ができる この事例では住宅復興支援に必要な物資の素早い調達という課題に対し、国連商品貿易統計データベースの300万件ものデータをSAS Visual Analyticsで分析し仕入れ先を可視化することで解決しています。 複雑で膨大なデータも適切に分析・要約・可視化することで経験ではない科学的根拠に基づいた新たな知見を導くことができます。 2. 大学中退率の改善 2つ目の事例はData for Goodを推進する社会団体であるDataKindが取り組んだアメリカのとある大学の中退率の改善です。 日本の大学と比べアメリカの大学は中退率が高く、 National Student Clearinghouseによると約半数近くの学生が学位を取得せず辞めていきます。DataKindは大学の依頼を受け、どの要素が中退に影響を与えるのか、また中退の危険性のある学生を事前に特定することに挑みました。 デモグラフィックデータや学業成績などの学生情報を10年分以上分析したところ、入試の成績と卒業は関連が確認できなかった一方で、GPAや専攻などが卒業に影響を与えていることが判明しました。 この結果を踏まえ20以上もの異なるアプローチのモデルを生成し改良を重ねた結果、生徒の中退を高い精度で予測するモデルを生み出しました。 詳しい内容は原文をご覧ください。この事例からは次の事が学べます。 未来を予測して事前に対処する この事例では、中退率の改善という課題に対して統計分析や機械学習を駆使し事前に中退リスクのある学生を特定することで解決を目指しています。事前の把握ができれば大学側は効率的な学生への支援が可能となるはずです。 上記以外にも参加者それぞれが事例紹介を行い、課題に対してのアナリティクスを用いたアプローチ方法を学びました。勿論データを分析のみで課題をすべて解決することはできませんが、従来の方法では成し得なかった突破口を生み出すことが実感でき、私たちの現在の取り組みに大きな示唆をもたらした有意義な会となりました。 SAS Japan Student Data for Good communityでは引き続き学生の参加者を募集しております。社会貢献を目指す活動を通してデータサイエンティストの役割である「課題の設定」から「データを用いた解決法の提示」までの一連の流れを経験できます。 興味をお持ちでしたら以下のアドレスまでご連絡ください。 JPNAcademicTeam@sas.com