All Posts
Learn how to split your data into a training and validation data set to be used for modeling. In part 3 of this series, we replaced the missing values with imputed values. Our final step in preparing the data for modeling is to split the data into a training and
Los crímenes financieros, dentro de los que se ubica el lavado de dinero, provienen en su mayoría de fenómenos como el crimen organizado y el narcotráfico en México. Y una de sus manifestaciones más complejas es el envío de remesas, en las que se dificulta hacer un análisis de riesgo,
SAS, 권위 있는 Chartis RiskTech 100®에서 2위 기록 새롭게 선보인 ‘행동 모델링’ 및 ‘금융기관을 위한 인공지능’ 포함 7개 부문 수상 AI 및 분석 부문 선두기업 SAS가 리스크 기술 공급업체 상위 100대 기업을 평가하여 순위를 발표하는 Chartis RiskTech 100(차티스 리스크텍 100)에서 종합 2위를 차지하는 동시에, 7개 주요 부문에서 수상하는 쾌거를 거두었습니다.
Lo vivido por la humanidad en los últimos años transformó la manera en que las empresas interactúan con sus clientes, cambiando sus hábitos, comportamientos y expectativas de forma permanente. En la actualidad, las empresas que han logrado adaptarse a estos cambios en el comportamiento del consumidor son las que tienen
AI became the unofficial word of 2023 and the craze is likely to continue into 2024 as new creative applications and uses of AI emerge across industries and sectors. But before organizations invest too many resources into foundational AI models, leadership should ensure that the organization has a firm grasp
Manufacturing remains a transformative process at its core, converting raw materials into valuable products. While the fundamental essence of manufacturing has endured for centuries, the methods and technologies employed have undergone significant evolution, driven by innovation and the ever-shifting demands of consumers. As we enter 2024, the manufacturing industry is
The collinearity problem is to determine whether three points in the plane lie along a straight line. You can solve this problem by using middle-school algebra. An algebraic solution requires three steps. First, name the points: p, q, and r. Second, find the parametric equation for the line that passes
The global demand for analytics talent persists, with organisations facing challenges finding qualified individuals to support their growth. McKinsey’s recent survey revealed a significant shortage of skilled practitioners for the most in-demand tech skills, with less than 50% of the required professionals available worldwide. Despite the well-known STEM skills gap,
The health care and life sciences market is accelerating – but not without a few necessary pitstops. Machine learning, digital twins, generative AI, robots as doctors, medications with sensors, and surgery at the speed of light. It’s all driving the market. Year after year, market researchers, analyst firms, and industry
Despite the wild ride and changing market conditions of the past few years, global banking has proven to be largely resilient and generally sees a more positive outlook. Inflationary pressures have brought the “low for long” interest rate era to an end (or at least to a sustained pause), allowing
The weight of the world has never been heavier – and it rests on the shoulders of government. Geopolitical hostilities, war, climate change, economic turmoil, large-scale migration and workforce shortages are worldwide issues. These challenges are compounded when governments have political divisions and stymied processes. Citizens want their government to
이번 글에서는 SAS의 Job Execution에 대해서 알아보려고 합니다. 개념과 접속방법, 실행방법, 편집방법을 예제를 활용해 간단히 알아보겠습니다. 1. Job Execution 소개 SAS Job Execution Web Application은 작업을 생성, 관리 및 실행하는 데 사용되는 웹 기반 클라이언트입니다. Java로 작성된 이 애플리케이션은 서버에서 실행되는 강력한 분석 및 프리젠테이션 프로시저와 함께 데이터에 대한 액세스를
SAS Visual Analytics(이하, VA)의 보다 효과적인 활용을 위해 파라미터의 개념과 용도를 소개해 드린 데에 이어, 이번에는 파라미터의 활용법에 대해 설명드리고자 합니다. 1. 설정 상황 SASHELP의 CARS라는 데이터를 기반으로 상황을 가정해 보겠습니다. CARS 데이터는 총 428개의 관측값과 15개의 변수를 가지고 있습니다. 이 중 Make, Model 등 5개의 범주형 변수를 제외하면 Invoice,
The world’s a hot mess – literally. We're facing unprecedented weather patterns fueled by climate change, uncertainty stemming from financial volatility and worsening business results. All while carriers struggle to determine which AI solutions (among thousands) to choose. It’s enough to make you want to shut the doors and windows
In 2024, we will witness the proliferation of synthetic data across industries. In 2023, companies experimented with foundational models, and this trend will continue. Organizations see it as an emerging force to reshape industries and change lives. However, the ethical implications can't be overlooked. Let’s explore some industries I think