CH 1 找出資料中的機會與趨勢 CH2 文字歸類情境說明 (群眾募資成功案例) CH3 文字剖析、篩選、歸類與結果說明 CH4 文字歸類應用- 迴歸分析 CH5 文字規則產生器情境說明 (使用蘋果日報頭條要文) CH6 文字規則產生器結果說明
Search Results: Text Miner (220)
在此章節中,會有SAS Text Miner每個模組概觀性的功能介紹,以及運作的流程; 在往後的章節中,將有每個模組的詳細操作介紹。
SAS Text Miner可探索隱藏在大量文字中的資訊。支援多種語言及檔案格式,並且提供豐富的語言與分析模型工具。將不同的非結構化文字片段、文件檔案庫及網頁下載內容,透過演算法自動識別出模式的各種主題,找出詞彙與片語間的顯著關聯。此軟體提供監督、無監督及半監督的方法來探索大量文件中過去未知的模式。
SAS Text Miner演算法跑出來的結果,以「文字歸類」為例,會輸出每篇文章對應到主題的分數,以及每篇文章是否屬於某主題的0/1值,這兩者當作新的變數加入預測模型,都有機會讓預測效果提升。
A new version of SAS® Text Miner and SAS® High-Performance Text Mining has recently been made available and I want to demonstrate some of the performance improvements that can be gained with this release. I’ll use a topic analysis that discovers the main themes in a document collection and consists
Día a día, todas las empresas recolectan grandes cantidades de información proveniente de textos en diferentes lenguajes como: retroalimentación de los clientes, emails, documentos web, encuestas, reclamaciones de garantía, estudios de investigación, feeds de redes sociales, etc. Realmente nadie tiene el tiempo de leer toda esta información y mucho menos
Les institutions gouvernementales que ce soit pour la défense, les transports, les services publics, la sécurité, ou les soins de santé ont un défi et une opportunité à traiter : donner un sens à d'énormes volumes de textes non structurés qui ne font que croître. Plus de 80 % de
SAS Enterprise Miner has been a leader in data mining and modeling for over 20 years. The system offers over 80 different nodes that help users analyze, score and model their data. Here are the Top Ten Tips for Enterprise Miner from a user with more than 20 years of experience.
Editor's note (10/25/17): You can practice what you learned in class with 15 hours of Free virtual lab time when you attend the in-person or Live Web Applied Analytics Using SAS Enterprise Miner class. Register now. Are you interested in taking an advanced course on the machine learning topic of Neural Networks? Does text
Man könnte fast meinen, es sei das bestgehütete Geheimnis des SAS® Enterprise Miner. Kaum jemand kennt es. Dabei war es schon immer da – fast. Ab Version 5.1 (2004). Es heißt EM5BATCH Makro und – Sie ahnen es schon – 5 wegen der damaligen Version 5. Es kommt so unscheinbar
In an upcoming paper for SAS Global Forum, several of us from the SAS Text Analytics team explore shifting the context of our underlying representation from documents to the sentences that are within the documents. We then look at how this shift can allow us to answer new text mining
Don’t get me wrong. I have no doubt in the capabilities of our SAS products and SAS solutions! But I wanted to get a firsthand experience of our new solution for text analytics, SAS Contextual Analysis 14.1. And the result is very convincing! But let’s start from the beginning. Functions
Das turbulente Jahr 2015 hat für Sie hoffentlich einen friedlichen Ausgang gefunden und auch ein Sie zufriedenstellendes Abschlussergebnis. Nachdem ich Ihnen für die Weihnachtsfeiertage aus meiner kompositorischen, malerischen SAS-Bastel-Programm-Bibliothek Anregungen zu Entspannung für besinnliche Momente zum Jahreswechsel anbieten konnte, sind nun im Januar 2016 alle Jahreszähler wieder auf Null zurückgesetzt.
Recently, I have been thinking about how search can play more of a part in discovery and exploration with SAS Text Miner. Unsupervised text discovery usually begins with a look at the frequent or highly weighted terms in the collection, perhaps includes some edits to the synonym and stop lists,
Cary, North Carolina, Dezember 1997: Das war die Geburtsstunde des SAS® Enterprise Miner™ (nachfolgend Miner genannt). Nur zur Orientierung für die Generation Y: Damals war noch ein Mann Bundeskanzler. Er hatte einen recht hohen BMI, wurde gerne mit einer Obstart verglichen und kam aus einem Ort gar nicht weit weg
Erfahrungen aus einem Selbstversuch mit SAS Contextual Analysis Bitte verstehen Sie mich nicht falsch. Ich bin unseren SAS Produkten und SAS Lösungen gegenüber in keinster Weise misstrauisch! Trotzdem wollte ich die Möglichkeiten unserer neuen Lösung für Text Analytics „SAS Contextual Analysis 14.1“ auf der eigenen Haut spüren und verstehen lernen.
The first text analytics product SAS released to the market in 2002 was SAS® Text Miner to enable SAS users to extract insights from unstructured data in addition to structured data. In 2009, in quick succession, SAS released two new products: SAS® Enterprise Content Categorization and SAS® Sentiment Analysis. These
When I ask people what they know about Denmark they often mention Hans Christian Andersen. He was born in Denmark in 1805 and is one of the most adored children’s authors of all time. Many of his fairy tales are known worldwide as they have been translated into more than
Is text analytics part of your current analytical framework? For many SAS customers, the answer is yes, and they've uncovered significant value as a result. As text data continues to explode both in volume and the rate at which it's being generated, SAS Event Stream Processing can be used to
Traditionelle Informationssysteme sind auf die maschinelle Aufbereitung und Verdichtung von Zahlen hin optimiert. Nicht alles aber lässt sich in Zahlen packen – und so entstehen immer mehr in Texten abgelegte Informationen. Um diese Informationen nutzen zu können, sind zusätzliche Methoden erforderlich, die über die aus der Zahlenwelt bekannten hinausgehen. Inhalte müssen
According to research, less than half of an organization's data is structured data; nearly 80 percent is unstructured data that may come from social media, customer letters, web pages, invoices and freeform survey answers. Getting the information you need from that data can be a quick and automated experience or
American country songs are known for topics such as mama, trucks, trains, heartbreaks and drinking. How many of these topics are included in the top country songs over the past 25 years? Deovrat Kakde of Kavi Associates used SAS Text Miner to find out! He shares some of his more
I'm happy to announce a new SAS text analytics community (online forum)! The community is a centralized location for everyone using SAS text analytics, including those working with Text Miner, Enterprise/Content Categorization, Sentiment Analysis and Ontology Management. Join the community to: Discuss ideas. Ask questions. Seek peer assistance. Share areas
I've known Jim Cox for a long time. He's the SAS R&D manager for SAS Text Miner, and a gifted singer. We almost never talk about work stuff, because Jim is waaaaay too smart for me. That's why I was so pleased to discover Jim's series of blog entries about
Personally, I don’t get Twitter. I have an account (mvgilliland) for anyone interested in not hearing any tweets from me. I follow a few people and have a few followers (including some that aren't porn bots) -- but what is the point? Does anyone really care that I’m out hanging
Word embeddings are the learned representations of words within a set of documents. Each word or term is represented as a real-valued vector within a vector space. Terms or words that reside closer to each other within that vector space are expected to share similar meanings. Thus, embeddings try to capture the meaning of each word or term through its relationships with the other words in the corpus.
Q: SAS 是不是都需要寫程式? 不會寫程式怎麼辦? A: NO! SAS Enterprise Guide(EG) 與 SAS Enterprise Miner(EM),無須寫程式快速進行資料整理、資料分析與資料探勘。 有許多老師同學喜歡使用SAS EG 進行教學研究: 1. 如果有地方要修改不用一直按上一步,想改哪裡就改哪裡 2. 可以一次把所有圖表直接輸出,不用一個個複製貼上 3. 每一步分析都流程化的呈現,方便修改與瞭解整個分析思路 Q: 可以在哪裡取得SAS呢? A: 若貴校為SAS全校授權學校,可以直接至資訊處/電算中心取得軟體。 若欲採購或是不確定學校是否為授權學校,敬請寫信至 twnedu@sas.com Q: SAS 要如何安裝呢? A: 請參考SAS 安裝支援頁面 【事前準備】 –請務必依文件 (1.1~1.4) 先確認電腦環境 –確認電腦為32位元或64位元 (選擇不同安裝檔案) –電腦名稱與使用者登入名稱務必為英文 【安裝SAS】 –若學校提供光碟/5-6個安裝檔案/iso檔→請從文件2.1 建立SAS Software Depot 開始 –若學校提供1個安裝檔案→請從文件2.3
Como integrar modelos hierárquicos de séries temporais desenvolvidos em R ao SAS Visual Forecasting analisando as diferentes estratégias? O objetivo deste artigo é apresentar como podemos executar modelos de séries temporais, que foram desenvolvidos no R, no SAS Visual Forecasting, podendo, assim, paralelizar e acelerar o processamento do código R.
在現今網路資訊爆炸的時代,每天都有很多新的資訊湧入,PTT是台灣一個網路論壇,也是大學生常常發文討論的地方。Gossiping Board八卦板是PTT最熱門的看板,每天有將近2000篇的新文章,怎麼快速從這麼多的文章中看出大家在討論的主題?在此章節中將介紹SAS Text Miner「文字歸類」節點,這個模組可以將文章分成不同主題,且不同於「文字群集」節點每篇文章只能分到一群,同一篇文章是可能討論很多種不同主題的。 此範例資料是採用2014中華民國九合一選舉前一個禮拜 ( 2014/11/24~2014/11/28 ) 發文的文章,總計共7275篇文章。若想要快速將7275濃縮成25個主題,看哪些文章在討論哪些主題,透過「文字歸類」節點,可看出有1033篇文章在討論「吃、買、去、八卦、賣」這個主題;782篇在討論「連勝、文、哲、柯、票」這個主題...。