SAS Japan

活用事例からデータ分析のテクニックまで、SAS Japanが解き明かすアナリティクスの全て
Analytics
0
和歌山県データ利活用コンペティション参考資料(2) 宿泊施設の利用状況を地図上に表示して地域差を分析する (ジオマップ)

前回のブログでは、SAS Visual Analytics にデータをインポートする方法を紹介しました。こうしてインポートしたデータをもとに、さまざまな図表・グラフの作成や統計解析を実行することができます。本記事では地図上にデータを表示するジオマップの使い方を説明します。 第1回和歌山県データ利活用コンペティションでは、「観光客を誘客するための施策」と「人口減少問題を解決するための施策」が募集テーマとなっていました。施策を検討するためには、まず現状を把握することが重要です。観光客の誘客に関しては、年間の訪問者数、宿泊者数、消費額や訪問目的などが考えられます。人口減少問題に関しては、人口の増減率、年齢別の人口構成、転出先や転入元などが考えられます。これらのデータは地理情報を含んでおり、地図上に表すことで効果的な図を作成することができます。本記事の例では、和歌山県が属する関西地区の宿泊データを利用してジオマップを作成します。 まずは、観光庁の宿泊旅行統計調査から平成29年1月~12月分(年の確定値)の集計結果をダウンロードします。ダウンロードしたファイルをSAS Visual Analytics にインポートする方法は、前回のブログ記事を参考にしてください。 SAS Visual Analytics 8.3 におけるジオマップの利用 -宿泊旅行統計- from SAS Institute Japan ジオマップをもとに調査をすすめると、和歌山県の宿泊稼働率が比較的低い要因を知ることができました。客室稼働率を高めるには、季節変動を抑え、年間を通じて旅行者を集客することが重要であるといえそうです。 つぎに、第2回のテーマである「高齢者が活躍できる社会づくり」「UIターン就職・若者の定住促進」に関連するデータを利用した例です。このスライド内では、時系列データを利用したアニメーション形式のジオマップ作成を紹介しています。時系列データに関しての詳細は、こちらのブログ記事を参考にしてください。 SAS Visual Analytics 8.3 におけるジオマップの利用 -高齢者の就労- from SAS Institute Japan ジオマップを用いてデータを図示することで、地域比較がより分かりやすくなり時系列の変化も直感的に把握することができます。また、分析を進めるための手がかりともなります。今回のコンペティションでは地理情報を含むデータの利用が予想されますので、その際はぜひジオマップを活用してみてください。 引き続き本ブログのシリーズでは、図表・グラフの作成や統計解析の方法について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしています。(追記:募集は締め切られました)

Analytics
和歌山県データ利活用コンペティション参考資料(1) データのインポート

SAS Japan と伊藤忠テクノソリューションズ株式会社は、第2回和歌山県データ利活用コンペティションに共同で協賛し、参加者に「データサイエンス教育プラットフォーム」を提供します。 このブログでは、データサイエンス教育プラットフォームの利用例をシリーズで紹介します。 本コンペティションは次世代のデータサイエンティストを育成することを目的に開催され、全国の高校生及び大学生が腕をふるいます。データサイエンス教育プラットフォームでは、プログラミングを知らない学生でもデータ分析ができるように、データの取り込み、集計、基本的な統計解析、高度な機械学習手法などをビジュアルなインターフェースで実行できる SAS Visual Analytics をWebブラウザから利用できます。

Data Visualization
SAS Visual Analytics on SAS Viya: こんな「かっこいいダッシュボード」でビジネス戦略練るのも面白い!

机上で男女が世界地図を広げて、何かの打ち合わせをしています。 航空会社A社の企画担当が、競合他社の路線を分析しているのか? それとも、これから二人で行く海外旅行のプランを立てているのか? いえいえ、これはSAS Visual Analyticsで作成されたダッシュボードの画面です。 このダッシュボードの構成は以下の通りです。 ・使用しているデータ:OpenFlightsで公開されている世界の空港の利用状況のデータ ・真ん中の世界地図:「ネットワークダイアグラム」オブジェクトを使用し、背景に地図を表示して、路線を描画 バブルの大きさは、利用頻度を表しています。 ・左側の棒グラフ:利用頻度の高いトップ10の航空会社 ・右下と左下の数値:「キーの値」オブジェクトを使用し、注目すべき指標をクローズアップしています。例えば右下の値は、利用頻度が最も高い空港名とその数を示しています。 ・人の手や机、カメラ、パソコン等は背景に使用している画像です。 今、このダッシュボードでは、左側の棒グラフ上で「Air China」が選択され、ネットワークダイアグラムと2つの指標はAir Chinaに自動的に絞り込まれた内容が表示されています。 でも、まだ、これは張りぼて? と思っていませんか。 以下は、左側の棒グラフ上で「US Airways」を選択した状態です。 ネットワークダイアグラムや2つの指標の内容が変わっているのがわかりますね。 ご覧の通り、インタラクティブなダッシュボードです。 みなさんも、こんなクールなダッシュボードで戦略を練ってみれば、新たなアイデアが湧いてくるかもしれませんね。 このブログは、SAS CommunityサイトのVisual Analytics ギャラリーに公開されている内容に基づいています。

Advanced Analytics | Analytics | Machine Learning
SAS Viya:ビジュアルパイプラインで予測モデル生成(自動特徴量エンジニアリングテンプレート編)

ビジュアルパイプラインで予測モデル生成(テンプレート使用編)では、SAS ViyaのModel Studioを使用し、標準で実装されているパイプラインのテンプレートを使用して、予測モデルを自動生成する手順を紹介しました。 今回は、標準実装のテンプレートに含まれている、「自動特徴量エンジニアリングテンプレート」を紹介します。 「特徴」=入力=変数(独立変数、説明変数)であり、 特徴量エンジニアリングとは、予測モデルの精度を高めるために、学習用の生データに基づき、特徴を変換したり、抽出したり、選択したり、新たな特徴を作り出す行為です。 以下は、特徴量エンジニアリングの例です。 ・郵便番号などの高カーディナリティ名義変数のエンコーディング(数値化) ・間隔尺度の変数の正規化、ビニング、ログ変換 ・欠損パターンに基づく変換 ・オートエンコーダー、主成分分析(PCA)、t-SNE、特異値分解(SVD)などの次元削減 ・季節的な傾向を把握するために、日付変数を別々の変数に分解して曜日と月と年の新しい変数を作成 より良い「特徴」を作り出し、選択することで、予測モデルの精度が向上するだけでなく、モデルを単純化し、モデル解釈可能性を高めるのにも役立ちます。 しかし、従来、予測モデリングのプロセスにおいて、データサイエンティストは、その多くの時間を特徴量エンジニアリングに費やしてきました。しかも、特徴量エンジニアリングの良し悪しは、データサイエンティストのスキルに大きく依存してしまいます。 こうした課題に対処するために、SAS Viyaでは、自動特徴量エンジニアリングテンプレートを提供しています。このテンプレートを使用することで、特別なスキルを必要とせず、特徴量エンジニアリングにかける時間を短縮し、より精度の高い予測モデル生成が可能になります。 以下が、SAS ViyaのModel Studioに実装されている「自動特徴量エンジニアリングテンプレート」です。 このテンプレートは、大きく3つのステップで構成されています。 高カーディナリティ変数に対するエンコーディング(数値化) 最良変換、PCA / SVD、オートエンコーダーを使用して新たな特徴を作成 特徴エンジニアリング未/済みデータに基づく予測モデルの精度比較 ステップ1.高カーディナリティ変数に対するエンコーディング(数値化) このステップの最初のノードは、「SASコード高カーディナリティ」という名のSASコードノードです。 SASコードノードを使用することで、SASプログラムをパイプラインに組み込むことができます。 このノードを選択し、右側画面内でコードエディタ:「開く」をクリックすると、その内容を確認できます。 このSASコードノードでは、最初に、20〜1,000レベルのカーディナリティの高い変数(固有値が多すぎる名義変数)を識別します。minlevelsとmaxlevelsの値を更新することで、この範囲を簡単に変更することもできます。次に、数値変換(TRANSFORM = LEVELENCODE)を指定し、これらの変数に対してのみレベル(水準)エンコーディングを行います。実際に変換を行うためには、「データマイニングの前処理」にある「変換」ノードを実行する必要があるため、「変換」ノードが接続されています。 レベルエンコーディングでは、名義を数値に変換します。これは、カーディナリティの高い変数を扱う場合に特に便利です。これらの変数は、ほとんどの機械学習アルゴリズムにおいてコンピューティングリソースの負荷をあげてしまうことが多いからです。最初に名義変数のレベルをアルファベット順に並べ替え、各レベルに昇順に数字(1から始まる)を割り当てます。 ステップ2.最良変換、PCA / SVD、オートエンコーダーを使用して新たな特徴を作成 ステップ2では、以下の3つの異なる自動特徴量エンジニアリング手法が適用されます。 変換-最良(Best):このノードは、「データマイニングの前処理」にある「変換」ノードを使用して、すべての間隔変数に対して「最良(Best)」の変換を行います。この方法では、各間隔変数に対して、ランク付け基準(ターゲットとの相関など)に基づいて、単一変数の変換(逆変換、標準化、センタリング、ログ変換など)を比較し、最も高いランク付けを持つ変換を選択します。 特徴抽出- PCA:このノードは、「データマイニングの前処理」にある「特徴抽出」ノードを使用して、間隔入力変数に対する自動特徴抽出手法として「自動」を指定しています。「自動」では、間隔入力変数の総数が500以下の場合は、主成分分析(PCA)が適用され、それ以外の場合は、特異値分解(SVD)が適用されます。 特徴抽出-自動エンコーダ:このノードでは、オートエンコーダを用いて特徴抽出を行います。この手法では、特徴抽出にすべての入力変数(間隔と名義)を使用します。オートエンコーダーは、入力データを再構成するために使用できる特徴のセットを学習することを目的とした教師なし学習技術です。手短に言えば、ニューラルネットワークは、ターゲット(出力)ニューロンを入力ニューロンと等しく設定することによって訓練されるものです。 このノードでは、中間隠れ層が10に設定されているので、10個の新しい特徴が作成されます。 ステップ3.特徴エンジニアリング未/済みデータに基づく予測モデルの精度比較 最後のステップでは、勾配ブースティングを用いた5つの異なる予測モデルが生成されます。 ・高カーディナリティー変数のレベルエンコーディング+特徴抽出(PCA)を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディング+特徴抽出(オートエンコーダー)を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディング+変換-最良を施したデータに基づくモデル ・高カーディナリティー変数のレベルエンコーディングを施したデータに基づくモデル ・元のデータ(特徴量エンジアリングを施していない)に基づくモデル 5つのモデルを生成後、パフォーマンスを比較します。勾配ブースティングは、非常に効果的な教師あり学習アルゴリズムであり、予測精度の面で他のアルゴリズムより優れていることが多いため、使用しています。

1 37 38 39 40 41 56