SAS Japan

活用事例からデータ分析のテクニックまで、SAS Japanが解き明かすアナリティクスの全て
Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Data Visualization | Internet of Things | Machine Learning | SAS Culture
小林 泉 0
SAS社員としての誇りーミツバチ・森林・絶滅危惧種の保護や医療への貢献にAI/アナリティクスを活用

SASの一つの顔は、アナリティクスで営利目的の意思決定を支援 筆者は、SAS社員として、20年以上に渡りアナリティクスおよびAIで企業・組織を支援してきました。 金融機関における、リスク管理や債権回収の最適化 通信業における、顧客LTV最大化、ネットワーク最適化やマーケティング活動の最適化 製造業における、需要予測、在庫最適化、製造品質の向上や調達最適化 流通・小売業における、需要予測やサプライチェーン最適化 運輸業における、輸送最適化や料金最適化 ライフサイエンス・製薬企業における、業務の最適化 官公庁における、市民サービス向上のための不正検知 など、様々な業種・業務においてアナリティクスの適用によるお客様のビジネス課題の解決に携わってきました。営利目的(ここでは市民サービスの向上も含めることにします)の企業・組織におけるアナリティクスの活用目的は主に以下の3つに集約されます。 収益(売り上げ)の増大 コストの低減 リスク管理 アナリティクスは、いわゆる「データ分析」を手段とし、過去起きたことを把握して問題を定義し、次に将来を予測し、様々な選択肢の中から最適な予測に基づいて意思決定をしていくことになりますが、その過程の中で、起きてほしい事象を予測して促進したり、起きてほしくない事象を予測して防いだり、その予測のばらつきを管理したりということを行っていきます。 このような営利目的でのアナリティクスの活用はSASという会社が誕生した40年以上前から行われており、基本的な活用フレームワークは変わっていません。IT技術の進化によって、利用可能なデータの種類や大きさが、増えてきただけにすぎないと言えます。例えば、昨今のAIブームの代表格であるディープラーニングですが、ディープラーニングという処理方式の進化と、GPUという処理機械の進化によって、非構造化データをより良く構造化しているものであり、もちろんモデリング時のパラメータ推定値は何十億倍にはなっていますが、モデリングのための1データソースにすぎません。もう少しするとディープラーニングも使いやすくなり、他の手法同様、それを使いこなすあるいは手法を発展させることに時間を費やすフェーズから、(中身を気にせず)使いこなせてあたりまえの時代になるのではないでしょうか。 SASのもう一つの顔、そして、SAS社員としての誇り、Data for Goodへのアナリティクスの適用 前置きが長くなりましたが、SAS社員としてアナリティクスに携わってきた中で幸運だったのは、データの管理、統計解析、機械学習、AI技術と、それを生かすためのアプリケーション化、そのためのツール、学習方法や、ビジネス価値を創出するための方法論や無数の事例に日常的に囲まれていたことだと思います。それにより、それら手段や適用可能性そのものを学習したり模索することではなく、その先の「どんな価値創出を成すか?」「様々な問題がある中で優先順位の高い解くべき問題はなにか?」という観点に時間というリソースを費やすことができていることだと思います。そのような日常の仕事環境においては、アナリティクスの活用を営利目的だけではなく、非営利目的の社会課題の解決に役立てるというのは企業の社会的責任を果たす観点においても必然であり、Data for Goodの取り組みとしてSAS社がユニークに貢献できることであり、SAS社員として誇れるところだと考えています。 最終的に成果を左右するのは「データ」 そして、もう一つの真実に我々は常に直面します。クラウド・テクノロジー、機械学習、ディープラーニングなどの処理テクノロジーがどんなに進歩しようともアナリティクス/AIによって得られる成果を左右するのは「データ」です。どのようなデータから学習するかによって結果は決まってきます。 IoT技術で収集したセンサーデータは知りたい「モノ」の真実を表しているだろうか? 学習データに付与されたラベル情報は正確だろうか? 学習データは目的を達成するために必要な集合だろうか? そのデータは顧客の心理や従業員の心理をどこまで忠実に表しているだろうか? 特に、Data for Goodのチャレンジはまさにそのデータ収集からスタートします。ほとんどの場合、データは目的に対して収集する必要があります。そして、下記の取り組みのうち2つはまさに、我々一人一人が参加できる、市民によるデータサイエンス活動として、AI/アナリティクスの心臓部分であるデータをクラウドソーシングによって作り上げるプロジェクトです。 Data for Good: 人間社会に大きな影響を及ぼすミツバチの社会をより良くする 概要はこちらのプレスリリース「SAS、高度なアナリティクスと機械学習を通じて健康なミツバチの個体数を増大(日本語)」をご参照ください。 ミツバチは、人間の食糧に直接用いられる植物種全体の75%近くに関して受粉を行っていますが、ミツバチのコロニーの数は減少しており、人類の食糧供給の壊滅的な損失につながる可能性があります。この取り組みでは、IoT, 機械学習, AI技術, ビジュアライゼーションなどSAS のテクノロジーを活用し、ミツバチの個体数の保全/保護する様々なプロジェクトを推進しています。この取り組みは以下の3つのプロジェクトから成り立っています。 ミツバチの群れの健康を非侵襲的に監視 SASのIoT部門の研究者は、SAS Event Stream ProcessingおよびSAS Viyaソフトウェアで提供されているデジタル信号処理ツールと機械学習アルゴリズムを用いて、ミツバチの巣箱の状態をリアルタイムで非侵襲的に追跡するために、生物音響監視システムを開発しています。このシステムによって養蜂家は、コロニーの失敗につながりかねない巣箱の問題を効果的に理解し、予測できるようになります。 関連ページ:5 ways to measure

Analytics | Data for Good | Data Visualization
SAS Japan 0
アナリティクスでハチを数えて保護しよう!

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはLee Ellen Harmerによって執筆されました。元記事はこちらです(英語)。 ハチを減少から救うために本当に必要なこととはなんでしょうか。 ハチの減少は目新しいニュースではありません。これまでにも、メディアによって農作業の工程や農薬がハチに影響を与えていることが取り上げられています。また、スタートアップ企業がハチの個体数を再び立て直そうと取り組んできた例があります。しかし依然として、ハチは世界的に重大な減少の一途を辿っているのです。 ハチを守るためには、養蜂家らが彼ら自身で出来る以上のことが必要とされています。養蜂家は自身の所有するハチやの巣箱の状態について熟知していますが、より大きな環境におけるハチについての知識は持ち合わせていません。そこは、市民科学者や一般市民らが力を発揮できるところです。 今日のハチの個体数の状態について理解し、減少を食い止めるためには、まず初めに私達のまわりにいるハチの実態を明らかにせねばなりません。ハチの保護を可能にするためには、ハチを“数える”ことが必要なのです。ハチの世界的な個体数を計数することは、地球上のハチの未来を守る第一歩です。ハチの計数作業によって集められたデータによって、ハチの種属ごとの生息地、そしてその生息地にハチがどのように分布しているのかといった重要な情報が明らかになります。SASはアパラチアン州立大学と共同でその取り組みを進めています。 ハチの保護に不可欠なテクノロジー 花粉媒介者であるハチとその環境を守るためには、私達はもはや伝統的な手法だけに頼ることはできません。その代わりとして使用されるのが、テクノロジーなのです。データの収集は始めの一歩でありますが、そのデータを可視化することで、養蜂家と研究者に迫り来る脅威を最も早く警告することができます。この指示器は、ハチに関するコミュニティの意思決定者に、これまで不可能と思われていた洞察を与えることができます。 その技術を実現するためのデータを集めるには、皆さんの助けが必要です。World Bee Countアプリケーションを通じて、人々はハチの計数に貢献し、周囲の環境にいるハチの写真を送信することができます。 “World Bee Countによって、私達はクラウドソーシングでハチのデータを集めることができます。それを使って、地球上のミツバチの個体数を可視化し、今日のミツバチに関する最大級の有益なデータセットを作り上げることができるのです。” アパラチアン大学 分析研究・教育センター理事 Joseph Cazier教授 SASは世界の最も逼迫した問題を解決することに意欲的であり、ハチを守ることも無視することはできない問題であると考えています。これまで、私たちは分析によってハチの健康を促進させようと試み、そしてData for Goodへ情熱を注いできました。つまりこのパートナーシップは、好奇心と探究心を持って世界的な問題を解決しようとするSASの本質的な精神を反映しているのです。 アナリティクスをすべての人に SASは世界花粉媒介者マップを作成しました。これは、World Bee Countアプリを用いて”ハチを数える“ことで、市民科学者や養蜂家からクラウドソーシングで集められたデータを視覚化したものです。このプロジェクトの後の段階では、研究者は作物の収穫高や降水量、その他ハチの健康に関係する重要なデータポイントを重ね合わせます。そうして、私達の世界でもっとも重要な花粉媒介者について、より包括的な理解を集約させます。 多くの人がデータを追加し、相関関係が導き出されるような豊富なデータセットを作成することで、可視化によるアナリティクスが実現できます。ハチのデータの単純な可視化から始まる取り組みは、ハチの個体数やその減少に繋がる要因の研究、そしてどのようにして私達がハチ全体の健康を促進させることが可能かといったような研究に対して、無限の機会を提供できるでしょう。   アプリをダウンロードして始めよう アプリケーションで写真を送信することは小さなことですが、ハチを保護するための活動として重要な役割を果たします。ハチは蜂蜜という素晴らしい自然の恵みを与え、私達に彩り豊かな朝の食卓を提供すると共に、私達の健康を促進させてくれます。5月20日は世界蜂の日として制定されています。beescount.orgからアプリをダウンロードして蜂の日を祝うと共に、見つけたハチの数をカウントしてみませんか? 今月だけでなく6月や7月、そしてその先のハチ月を超えてこの活動を続けていけたらいいですね!  

Analytics | Students & Educators
0
【学生・教員向け】学習ポータルAcademic Hubの紹介

学生の皆さん、おうち時間をどのようにお過ごしでしょうか。「自宅にいる時間が多くなったけど何を勉強したらいいかわからない」「この機会にSASの認定資格を取ってみたいから勉強の進め方を知りたい」と考えている方に、本記事ではSAS Academic Hubを紹介したいと思います。 SAS Academic Hubには、前回のブログで紹介したSAS Learning Subscriptionに含まれているe-learningやSAS認定資格の申し込みページが集められていて、自分の勉強目的からコースを選択してステップを進めることで知識を習得できたりSASの認定資格の学習ができたりする、学生と教員向けのポータルです。 それでは、SAS Academic Hubについて、学生向けに「どんな学習コースが提供されているのか」「使用するときのポイント」「学生にとってのメリット」を紹介します。   1.学習コースを選択しましょう SAS Academic Hubには合計8個の学習コースがあり、そのうち6個のコースでSASの認定資格のために活用することができるようになっています。ここから自分の興味にあうコースを選択してください。 コースを選択すると、次のページは4つのStepに分かれています。 Step1: ソフトウェアへのアクセスについて Step2: 学習 Step3: 試験対策の紹介と模擬問題 Step4: 実際の認定試験への案内 各ステップにはソフトウェアにアクセスできるウェブページや教材、e-learning、ビデオなどが割り振られています。またそれらにはMore informationが付いていて、そのページに何があるかを簡潔に紹介しています。   2.学習コースを進めましょう 今回は、SAS言語を初めて使う人向けで、プログラミングをする際に意識しておきたいプロセスなどを学習することができるGetting Started with SAS/ SAS Certified Specialist: Base Programming Using SASを例に、実際の学習コースを紹介します。 Step1:ソフトウェアへのアクセス この学習コースで必要なソフトウェアが提供されているページを紹介しています。このステップでそのページからソフトウェアにアクセスすることで、次のステップで学習する内容を自分でも演習することができます。 Step2: 学習 実際にLessonを受講します。ここでは、前回のブログで紹介したSAS Programing1:EssentialがLessonに割り振られています。Lessonの詳しい内容は前回のブログで紹介していますので、是非参考にしてください。 Step3: 試験対策の紹介と模擬問題 受講した学習内容が試験内容に含まれているSASの認定資格の試験対策を紹介しています。模擬問題も提供されています。 Step4:

Analytics
SAS Japan 0
カオス状況下での予測/フォーキャスティング: IBFバーチャル・タウンホールからのメモ

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはMichael Gillilandによって執筆されました。元記事はこちらです(英語)。 カオス状況下での予測/フォーキャスティング Institute of Business Forecasting(IBF)は、「世界的パンデミックというカオス状況下での予測と計画」に関して80分間のバーチャル・タウンホールを開催しました。現在、それを録画したオンデマンド・ビデオが公開されており、一見の価値が大いにあります。そこには、以下のような経験豊富な識者陣による堅実かつ実践的なガイダンスが満載です。 エリック・ウィルソン(Eric Wilson)氏: IBFのソートリーダーシップ担当ディレクター(司会者) ダスティン・ディール(Dustin Deal)氏: 北米ビジネス・オペレーショズ担当ディレクター、Lenovo社 パトリック・バウアー(Patrick Bower)氏: グローバル・サプライチェーン・プランニング&カスタマー・サービス担当シニア・ディレクター、Combe社 アンドリュー・シュナイダー(Andrew Schneider)氏: サプライチェーン担当グローバル需要マネージャー、Medtronic社 ジョン・ヘルリーゲル(John Hellriegel)氏: IBFのシニアアドバイザーおよびファシリテーター 以下に、私が各パネリストから得た重要な知見をまとめます。 ジョン・ヘルリーゲル氏: 今現在、マクロ予測は相当困難であり、ミクロ予測(製品レベルに至るまで)は更に困難である。 平時状況を超えるレベルで多数の介入要因(例:政府による刺激策、原油価格の下落など)が存在しており、それら全てが不確実性と複雑性を増大させている。 高い予測精度が期待できないことから、需要計画担当者は企業における「不確実性の理解」と「適切な意思決定の実現」を支援することにフォーカスするべきである。 最も役立つのは、明確な前提条件に基づくシンプルなモデルである可能性が高い(例えば、個々の品目を調整しようと多大な労力を費やすのではなく、「3ヶ月間、各カテゴリーで25%の削減を実施する」など)。 ジャスティン・ディール氏: 中国では生産が回復しつつあるが、物流の遅延は依然として存在する。 マクロ/ミクロの両レベルでデータを収集するべき。これには、チャネルの在庫とセルスルー(実販売数)も含まれる。 チャネル在庫が低水準な場所や、即座の補充が必要な場所を把握するべき。 プランニング(例:S&OP)をもっと頻繁に実行するべき。 アンドリュー・シュナイダー氏: 今現在は、典型的な需要計画を行うのではなく、代わりに、「需要衛生サービス」(データ・クレンジング、仕入数/実売数の比較・把握など)にフォーカスするべき。 物事が平時状況に回復するまでの間は、需要の統御(コントロール)および形成(シェイピング)にフォーカスするべき。 変動係数を活用して、どの製品がCOVID-19(新型コロナウイルス感染症)の大規模な感染拡大のインパクトを最も受けるのかを特定するべき。そして、そのインパクトに従って製品をセグメント化し、リスクベースのABC分析を考慮する。 「データの観察・収集という “受動的” な取り組み」と「欠品状況から “入手可能な代替製品” への需要推進という “能動的” な取り組み」とを区別するべき。 需要シグナルの品質を評価するべき。POS(販売時点情報管理)システムを導入済みであれば申し分ないが、未導入の場合でも、顧客の真のニーズの解明に努めるべき(注文数/注文減少数/注文残数などの状況を踏まえた上で)。 組織内のデータだけでなく、外部の追加的なデータソースの活用も試みるべき。そこから何が分かるか? 需要の確率分布を考慮するべき。ただし、過剰な取り組みは禁物。「平時状況に回復した後、組織がトラブルに直面するような事態」を招いてはならない。 今現在は、精度についてはそれほど心配する必要はない。代わりに、様々なアプローチの予測付加価値(FVA)を検討するべき。

1 2 3 35