SAS Japan

活用事例からデータ分析のテクニックまで、SAS Japanが解き明かすアナリティクスの全て
Analytics | Data for Good | Data Visualization
SAS Japan 0
新型コロナウイルスの感染拡大を追跡するためにデータ・ビジュアライゼーション(視覚化)を利用する

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはMark Lambrechtによって執筆されました。元記事はこちらです(英語)。 世界的な公衆衛生問題が拡散する際、初期段階では多くの不明事項が存在するものですが、新型コロナウイルスのように急速な感染拡大の場合は特にその度合が高まります。データ・ビジュアライゼーションは、傾向を理解したり、複数のデータポイントから意味のあるストーリーを組み立てたりするための優れたスタート地点となりえます。ウイルスの拡散状況を視覚化できる機能は、問題意識の喚起、そのインパクトの理解、そして究極的には予防努力の支援に役立つ可能性があります。 2019年12月31日、世界保健機関(WHO)の中国オフィスは、中国湖北省の武漢市で検知された原因不明の肺炎の感染ケースについて報告を受けました。最初の報告以降、この新型コロナウイルス(SARS-CoV-2)は世界的な感染拡大を見せており、感染者は30ヶ国以上の数万人に及び、「新型コロナウイルス感染症(COVID-19)」と呼ばれる急性呼吸器疾病を引き起こしています。 この状況を受け、SASは新型コロナウイルスの現況、場所、拡散状況、トレンド分析を描き出すインタラクティブなレポートを作成しました。 元になるデータは日次で更新されており、感染拡大の進行状況を定期的にチェックすることや、世界的な拡散状況を時間軸に沿ったアニメーションで確認することができます。この対話操作型レポートでは以下のことが行えます。 過去10日以内に新たに確認された感染者の数を調べ、このウイルスの感染率、回復率、死亡率がどのように推移しているかを確認する。 このウイルスがどの地域に侵入したかを調べ、発生地の中国と世界の残りの地域とで状況を比較する。 感染確認済みのケースを分析することで、回復率が時の経過に沿ってどのように変化しているかを理解する。 このレポートはSAS Visual Analyticsと、WHO、CDC、ECDC、NHC、およびDXYからのデータ(JHU CSSEによってコンパイルされたもの)を用いて作成されています[訳注:JHU CSSE=米国ジョンズ・ホプキンズ大学システム科学工学センター]。 SAS Visual Analyticsで作成した新型コロナウイルス・レポートの概要 「新型コロナウイルス感染症(以下、COVID-19)」の感染拡大に関するサマリー情報を手早く確認したい場合は、こちらをご覧ください。 このサマリー情報は、世界各地の統計情報を用いて日次で更新されています。このWebページのこれ以降では、各種レポートからの重要な洞察をスクリーンショットでご紹介します。実際のレポートでは、最新のデータに基づき、ご自身で対話操作しながら統計情報や分析結果を閲覧することができます。 地域別の詳細情報を確認したい場合や、対話操作型レポート全体を探索したい場合は、サマリー情報ページの右上隅にある「Full Report」ボタンをクリックすると、完全なダッシュボードを起動できます。 最初に表示されるダッシュボード・ビュー([Status]タブ)では、日次で更新されるデータに基づき、COVID-19の感染拡大の概況を簡単に確認できます。具体的には、新たに確認された感染者数、回復者数、死亡者数などを地域別にフィルタリングして閲覧することができます。 図1: COVID-19の感染拡大の概況。新たに確認された感染者数、回復者数、死亡者数などを地域別にフィルタリングして閲覧することができます。 レポートの[Locations]タブ(下の図2)では、 全世界および特定国の新型コロナウイルス関連データを確認できます。 図2:[Locations]タブでは、全世界および特定国の新型コロナウイルス関連データを確認できます。 特定国のデータを見るには、左上のフィールドに国名を入力します(下の図3)。 図3: 国名を入力すると、その国の詳細情報だけに集中することができます。 新型コロナウイルスの最初の感染者が中国で報告されてから既に何週間も経過しており、感染拡大は世界各地へと広がっています。私たちは、Esri社のGISマッピング・ソフトウェアから取得した地理空間データのレイヤーを追加することで、対話操作型の画面を用いて、中国とその他の国々にまたがる形で新型コロナウイルスの拡散状況を探索できるようにしました。 [Spread]タブでは、SAS Visual Analyticsの時系列アニメーション機能(下の図4)を用いて、ウイルスが世界全体に拡散していく様子を見ることができます。アニメーションを再生すると、中国国内での拡散状況や、世界全体の拡散状況および深刻度を確認できます。 図4: 時系列アニメーションで、ウイルスが世界全体に拡散していく様子を見ることができます。 [Trend Analysis]タブでは、様々なビジュアライゼーションを切り替えながら、COVID-19の感染拡大に関連したその他のデータの傾向を見ることができます(下の図5)。 図5: 日次の感染者数/死亡者数のトレンド分析 [Epidemiological Analysis]タブでは、罹患率および有病率を見ることができます。 図6: 10万人あたりのCOVID-19感染者数を国ごとに見る 図7: 期間有病率を国または地域ごとに見る [Collective Insights]タブは、全世界のまたは国ごとの感染拡大状況を1つの表にまとめています(下の図8)。

Analytics
SAS Enterprise GuideのカスタムタスクでPythonコード実行

SAS Enterprise Guide(EG)で簡単にPythonなどオープンソース・コードを実行できる方法を紹介します。 1.オープンソースコード実行用タスク(OST)の概要 2.事前設定 3.EGでの使用方法 4.AMOでの使用方法   1.オープンソースコード実行用タスク(OST)の概要 SAS Enterprise Guide(EG)は直感的なユーザインタフェース上で、マウスの簡単操作で、透過的にデータにアクセスし、様々な分析用タスクを活用し、データの準備から加工・変換、集計・分析、レポート作成に至る一連の作業をグラフィカルなフロー図として描き、実行することができるツールです。 一方、多くの組織ではPython, Rなど様々なオープンソースのスキルを持つデータサイエンティストが混在することが多く、こうしたオープンソース(OS)とのコラボレーションも必要になってきています。従来、EGとPythonなどOSと連携する際には、データでのやりとりが必要でした。例えば、EGで作成したデータをエクスポートし、OSユーザに渡して処理してもらうか、その逆か、になります。 都度このようにデータをやりとりするには手間と時間がかかりますし、データやPythonコードなどの管理も課題となります。こうした課題を解決する手段の一つとして、カスタムタスクを活用することができます。 カスタムタスク:EGには、数多くのタスク(データ準備用タスク、分析用タスク、など)が実装されています。このタスクは顧客ニーズに応じてカスタムで作成し、活用することができるようになっています。SASのサポートサイトからカスタムタスクを作成するためのテンプレートをダウンロードし、使用することができるようになっています。カスタムタスクの作成方法の詳細に関しては、次回のブログでご紹介します。 オープンソースコード実行用タスク(OST):OSTはOpenSourceTaskの略で、EGカスタムタスクのテンプレートに基づいて開発されています。OSTを使用することで、EG上で簡単にPythonコードを実行することができ、GUIベースの簡単マウス操作でPythonコードを再利用し、EG上で、標準実装のタスクとOSTを活用し、連携してアナリティクス作業を完結することができます。これによって、様々異なる分析スキル(GUIユーザー、SAS言語ユーザー、OS言語ユーザー)を連携し、有効活用することが可能となります。また、この分析処理は自動化することも可能です。  次にPythonコード実行用のOSTの使用方法を紹介します。EGのバージョンは8.2を使用したものです。   2.事前設定 ・Python環境の確認 まずSAS9サーバ側にPython環境がインストールされていることを確認してください。Pythonの環境がない場合は、PythonまたAnacondaなどPythonのruntimeをインストールする必要があります。 ・SAS9サーバーの設定 SAS9のSMC(SAS Management Console)を起動し、以下の画面を開きます。 「Environment Management」>「Server Manager」> 「SASApp」>「SASApp Logical Workspace Server」>「SASApp - Workspace」を右クリックし、「Properties」をクリックし 以下の設定でXCMDの実行を許可します。 「Options」タブ >「Advanced Options」>「Launch Properties」で「Allow XCMD」をチェックし、「OK」をクリックします。 ・OSTパッケージの取り込み OSTパッケージをダウンロードし、展開したCustomフォルダをEG(またAMO)のインストール先(以下画面ショットのロケーション)にコピーします。そのほか、臨時ファイル保存と作業用フォルダC:/Customを作成し、準備作業が完了です。 これで、OSTが使用できる状態になります。   3.EG上の使用方法 まず EGを起動し、処理対象データを選択します。今回はSASHELPライブラリ内にある「CLASS」を選びます。データを選択した状態で、タスクリストのSAS Custom Task配下のOpenSourceTaskをダブルクリックします。

Analytics
小林 泉 0
2020 ビジネスにおけるAI/アナリティクストレンド

アナリティクス・プラットフォームは、OSSとの機能的な連携にとどまらず、OSS利用環境そのものの価値を高めるプラットフォームへと進化 昨今、40年以上にわたりSASが提供続けてきたこのAI/アナリティクスが、時代背景とテクノロジーの進化によって、特定のAI/アナリティクス先進企業だけの道具から、ほとんどすべての企業にとって活用可能な-多くの場合競争に勝つためには活用しなければならない-道具になってきました。 従来より、SASはオペレーティング・システム、データソースや、システム・アーキテクチャなど特定のS/Wやテクノロジーに依存せず、どのような企業のIT環境にたいしても柔軟に適用可能なアーキテクチャでしたが、世の中のテクノロジーの変化に合わせ、その柔軟性をより高めるために、SAS Viyaを提供することになりました。 そして、SASはSAS Viyaのオープンなアーキテクチャにより、OSSで構成されたアナリティクス環境、OSSを利用するアナリティクス組織に、全く新しい俊敏性と信頼性の両方を兼ね備えたアナリティクス基盤を提供し、より多くの試行錯誤とリアルなビジネス価値の創出を可能とする環境を提供しています。 現在必要なのは、俊敏性と信頼性の両立 多くの企業が従来にも増してグローバルの競争にさらされています。不正・セキュリティ対策においてはより巧妙なスピードの速い攻撃に対応する必要があり、金融リスク業務はさらなる規制対応と同時によりプロアクティブな利益創出への転換をはじめており、顧客の購買行動はより多様化・リアルタイムな顧客経験が重要となり、モノのサービス化に代表されるようなビジネス・モデルの変革への急速な移行が求められ、製造品質はより速く、より品質の高いプロセスへの変革が要求されています。また、特に日本においては労働人口の不足により、たとえば製造プロセスやサプライチェーンの高度なレベルでの標準化と自動化、その他のビジネスプロセスにおいても様々なレベルでの意思決定を高精度に自動化する必要に迫られています。さらに、より付加価値の高いサービス提供のためのビジネス・モデル創出など、あらゆる場面でAI/アナリティクスの活用による、イノベーションが求められています。 変化の早い時代に必要な俊敏性 このような時代においてアナリティクス活用に求められる一つの側面は「俊敏性」です。本当に役に立つ洞察を得るためには、無数の試行錯誤・実験を繰り返す必要があります。アナリティクスにおいては、利用データの試行錯誤、利用アルゴリズムの試行錯誤、仮説検証の繰り返し、そのような試行錯誤・実験-それは場合によってはPOCと呼ばれることもありますが-によって結果的に得られた有用な洞察がイノベーションとなります。したがって、この試行錯誤・実験をより手軽に、迅速に行う手段が有用であり、それはソフトウェアの入手のしやすさや、最新の論文から技術的な手法に関する世の中の知の活用のしやすさなどの特徴のある、OSSの活用の一つの有用な活用形態となっています。 ここで一つ注意しなければならないのは、OSSの利用や関連論文の利用によって得られるものはビジネス上の洞察ではなく、あくまで手段としての技術テクニックの知識であるということです。ディープラーニングのようにあ「非構造化データを構造化する技術」であったり、「非常にスパースなデータからよりより推定を行うための技術」であったり。アナリティクスを活用してビジネス上の成果を得るためには、あくまで、そのような手段とは別に、まず初めにビジネス上の問題定義-デザインといってもいいでしょう-が重要です。これは従来からの世界では既知の視点です。これを忘れると、いわゆるPOC疲れなど、手段が目的化したプロジェクトに貴重なリソースを費やす結果となっていることは、ここ数年、市場でよく見られた光景です。 また、ビジネス上の洞察は常に「問い」に基づくものでありますが、ビジネスの営みの結果である「データ」に潜む「傾向」、すなわち「データに潜む洞察」、を瞬時に導き出す技術も出てきています。昨今「拡張アナリティクス」(AI Augmented Analytics)と呼ばれているものです。AIブームの中、AIを使いこなすこと-すなわちディープラーニングを使いこなすことであったり、予測モデルをいかに簡単に開発するか-そのものが目的化してきました。そのブームが落ち着きを見せ始め、ツールの中にAI技術が組み込まれ、ビジネスユーザーには本来不要であった「自動的に簡単にモデルを開発する」という仕事から、「自動的に洞察を得る」という本来すべきことに注力できるようになってきています。 洞察の獲得と得られた洞察をビジネスに適用するための信頼性 試行錯誤や実験において洞察を得るためには、闇雲に作業を繰り返すのではなく、過去の試行結果に基づいた試行錯誤を繰り返すというプロセスが必要となります。過去の実験はどのようなデータを利用したのか、そのデータはどのような文脈で取得されたのか、それをどのように加工・分析したのかというプロセスと、最終的な結果、このような情報を統制・管理したもとでの試行錯誤でなければ、試行錯誤の積み重ねによる洞察は得られません。つまり、昨今例えば、デジタルトランスフォーメーションのための専任部門によって無数に繰り返されるPOCについても、ガバナンスが必要となるということです。このように適切に統制されたPOC活動は仮にそのPOCからその時、有用な洞察が得られなかったとしても、貴重な資産として次のPOCに生かされるのです。 さらに、試行錯誤やデータの探索によって得られた得られた洞察を実際のビジネス上の価値-それは収益の向上、コストの削減、リスクの管理に大別されます-に変えるには、業務そのものの意思決定プロセス・アクションに落とし組むことが必要です。AI/アナリティクスをビジネス・プロセスとして運用するということは、アナリティクス・モデルによって意思決定を自動化することに他なりません。 また、企業・組織がビジネス・プロセスとしてそのような意思決定を回すためには、アナリティクス・モデルによる結果すなわち、ビジネス上のアクションの結果をモニターし評価する必要があり、市場の動向変化によるモデルの陳腐化に対応するためにモデルのパフォーマンスを管理をする必要があり、現在システムに組み込まれているモデル-これをチャンピオンモデルと言います-はなにかを管理する必要があり、さらには、望まない結果が生じた場合に-あるいはその逆の場合にも-結果に対する説明責任を果たすために、そのモデルの成り立ち-使用したデータ、データ加工のプロセス、モデリングのプロセスなど-を管理する必要があります。 俊敏性と信頼性を両立するSAS Viyaのガバナンス機能とは SAS Viyaでは使用するプログラミング言語を問わず以下のガバナンス機能を提供します。これにより、統制のとれたコード・アグノスティックなアナリティクス環境を実現します。 完全にオープンなI/Fによる民主化されたツールにより、どのようなスキルの方でも利用可能 SAS Viyaでは完全なコード・アグノスティック(データサイエンティストは自身が好きなプログラミング言語を利用可能)な世界を実現しており、データ加工、統計解析、機械学習、ディープラーニングなど各種のアナリティクス処理だけでなく、ユーザー管理、セキュリティ管理、システム管理、データ管理からモデル管理まで、全ての機能をOSSプログラミング言語であるPython, R, REST APIから利用可能です。 また、従来からあるSAS9においても、ほとんどのSASプロシジャをpythonから利用可能になっています。 もちろん、コーディングスキルを持たないビジネス・ユーザーはデータの準備、探索、モデリングまでシームレスに連携したグラフィカル・インターフェースによって市民データサイエンティストとしてアナリティクス・プロジェクトに貢献することが可能です。 OSSかどうかにかかわらず、データに基づいた洞察を価値に変えるためにのビジネス上でのオペレーショナライズを支援 AI/アナリティクスから実際のビジネス価値を創出するためには、問い(問題設定)、データの準備、データの探索、モデリング、意思決定プロセスの構築、業務オペレーションへの組み込み、意思決定(アクション)の結果のモニタリグ(レビュー)という一連のアナリティクス・ライフサイクルを、様々な組織の役割が強調して実現する必要があります。業務オペレーションへの組み込みには大きく分けて二つの形態があります。 バッチスケジューリングによるスコアリング処理 アプリケーションから呼び出されるリアルタイム・スコアリング処理 スコアリング処理 ここでいうスコアリングとは、昨今のAI・機械学習ブームの中、その研究領域で使用されている「推論」と同じものです。ビジネスの世界では、二十数年前からこの「スコアリング」という呼び方で実施されていました。顧客の購買確率や解約確率のスコアを出す、信用リスクのためのスコアを算出、などというようにです。 1.バッチスケジューリングによるスコアリング処理 スコアリングの仕組みにおいては、ほとんどのケースでシステムの安定性の観点も鑑み、こちらの方式が採用されます。後述のリアルタイム・スコアリングのケースにおいても、あらかじめスコアリングした結果を検索するだけで済むトランザクション処理がほとんどなためです。全顧客あるいは全セグメントに対してあらかじめスコアを算出したものを、業務システムに連携します。 このケースにおいてはのチャレンジは、開発したモデルをもとにプロダクション・レベルのバッチ処理を開発・テスト・スケジュール化・運用することです(デプロイメント・プロセスと呼びましょう)。モデルの入力データを作成する処理を作る必要があるからです。チャレンジのポイントは、そのデプロイメント・プロセスをユーザーサイドが行うのか、IT部門サイドが行うのか、はたまた、どのようにシームレスに強調するのかです。これは、モデルを組み込む業務プロセス、たとえば商品の数、サービスの数が多いケースにおいてすでに課題となっています。 約二十年前のデプロイメント・プロセスについての余談ですが、ある通信会社において顧客ごとの解約予兆スコアを算出していました。プロジェクトメンバーの一人であったお客様のIT部門の担当の方は、このスコアをもとに接客すべきと、すぐに、そのスコアテーブルのデータを販売店に持参し参考にしてもらうことで、大きな効果を生み出していました。今の時代とは、使用するデータと技術が異なるだけで、ビジネスプロセスにデプロイするという意味は全く何も変わってないことがお分かりいただけると思います。 2.アプリケーションから呼び出されるリアルタイム・スコアリング処理 リアルタイム・スコアリングにはさらに2種類の技術的視点があります。オンライン・トランザクション処理のタイプと、ストリーミング処理のタイプです。これら二つは日本語で言うと同じように「リアルタイム処理」と表現されることが多いですが、技術的な実現イメージはことなります。前者は、リクエスト/レスポンス型であり、その多くはフロントエンドのアプリケーションから、例えば顧客情報などの必要データがスコアリング・エンジンに渡され(リクエスト)、与信結果のスコアを返す(レスポンス)といういわゆるトランザクション処理になります。昨今のREST APIインターフェースなどはこの目的のものです。一方で後者は、データが絶え間なく流れてくるセンサーデータを処理するような場合で、ストリーミング型と言われます。この時のデータのことをイベントと言ったりもします。データ(イベント)がやってきた際に処理が実行されます。多くは、IoTという言葉が登場するシーンで求められる処理方式です。 どちらのタイプにせよ、このリアルタイム・スコアリングを組み込むシステムにモデルを組み込むときには、アプリケーションの開発プロセスを意識する必要があります。なぜなら、アプリケーション・ロジックの変更を伴なうモデル変更も多々あるからです。たとえば、与信システムにおいて新たな説明変数の入力を必要とするモデルの変更は、フロントアプリケーションのUIの変更を伴います。昨今、アプリケーションの開発・テスト・運用プロセス(DevOps)と、モデルの開発・テスト・運用プロセス(ModelOps)の融合が求められているのは、このためです。 2020のAI/アナリティクス・トレンド AIブームも少し落ち着きを取り戻し、モデルの開発という本来手段であることそのものが目的化してしまっている状況から、開発したモデルをビジネスプロセスにデプロイするという本来目指すべきことの重要性が、このAI市場にも浸透しつつあるようです。筆者は、様々なお客様のご支援を通して、またメディアの方々、リサーチファームの方々との情報交換を通して、2020年、以下の3つが引き続きトレンドとなるのではないかと考えています。 アナリティクスの民主化 AI技術のコモディティ化(隠ぺい化)し、「拡張アナリティクス」として進化 OSSプログラミングからGUIユーザーまでが共存可能なオープンなアナリティクスプラットフォーム 人材の活用と技術伝承のための「共有とコラボレーション」

Analytics
0
R言語でSAS ViyaのAI機能活用 第二回「アクションセットと最初のデータ読み込み」

概要 第一回の「CASサーバーとSWATパッケージ」に続き、第二回としてCASのアクションセットの活用やCASサーバーへのデータ読み込みなどの基本操作の方法について紹介します。 アクションセットについて CASサーバー上での分析作業を開始する前に、“アクションセット”という重要な概念に関して紹介します。 アクションセットは、関連する機能を実行するアクションの論理的なグループです。 SAS Viyaでは、関数のことを「アクション」、関連する関数のグループを「アクションセット」と呼んでいます。アクションでは、サーバーのセットアップに関する情報を返したり、データをロードしたり、高度な分析を実行するなど、さまざまな処理を実行できます。 アクションセットを使ってみましょう それでは、サンプルコードを使いながら、SAS Viyaのアクションセットでデータの読み込みからプロットまでの一連の操作を説明します。 ・データの読み込み CASサーバーにデータを読み込むには二つの方法があります。一つはread.csv()でcsvファイルをRデータフレームの形で読み込んだ上で、as.casTable()を使用する方法です。この関数はデータをRのデータフレームからCASテーブルにアップロードすることができます。今回の例では金融関連のサンプルデータhmeqを使って紹介します。 library("swat") conn <- CAS(server, port, username, password, protocol = "http")   hmeq_data <- read.csv(“hmeq.csv”) hmeq_cas <- as.casTable(conn, hmeq) もう一つはcas.read.csv()を使って、ローカルからファイルを読み込んで、そのままCASサーバーにアップロードする方法です。仕組みとしては、一つ目の方法と大きくは変わりません。 hmeq_cas <- cas.read.csv(conn, hmeq) as.casTable()或いはcas.read.csv()からの出力はCASTableオブジェクトです。その中に、接続情報、作成されたテーブルの名前、テーブルが作成されたcaslib(CASライブラリ)、およびその他の情報が含まれます。 Rのattributes()関数を使えば中身を確認できます。 attributes(hmeq_cas) $conn CAS(hostname=server, port=8777, username=user, session=ca2ed63c-0945-204b-b4f3-8f6e82b133c0, protocol=http) $tname [1] "IRIS" $caslib [1] "CASUSER(user)"

1 2 3 33