Tag: academic

Data for Good | SAS Events | Students & Educators
0
第3回「データサイエンティストのキャリアと活躍のかたち」レポート

データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第三回が3/19(火)に開催されました。第一回・第二回に引き続き今回も多くの学生の皆様に参加していただき、有意義なセミナーとなりました。本記事では、当日の様子についてご紹介します。 本セミナーでは、データサイエンティストのキャリアと活躍の場や、ビジネス上でのアナリティクス活用方法について、スピーカーがこれまでの経験をもとにご紹介しました。 SASにおけるデータサイエンティスト はじめに、データサイエンティストのキャリアやスキルについてSAS JapanのSebastian Wikanderより講演を行いました。 前半は、自身のキャリアや経験をもとにした、データサイエンティストのキャリアの紹介です。キャリアの初めはトラックメーカーに就職。様々なビジネスモデルをデータを用いて分析することに魅力とやりがいを感じ、SASに転職しました。SASでの仕事は年齢・学歴・国籍等、多様性があり、より良いパフォーマンスが発揮できます。具体的な仕事例として、大手IT企業の業務プロセス改善プロジェクトと部品メーカーにおけるディープラーニング活用プロジェクトを紹介し、SASと顧客のノウハウを合わせるチームワークの重要性や、過去の学びやスキルをもとに常に新しいチャレンジへと挑戦する楽しさなどを伝えました。 次に、データサイエンティストに必要なスキルの紹介です。核となるデータサイエンススキルの他にも、プログラミングスキル、統計学や機械学習の知識、ビジネス能力、英語力を含むコミュニケーションスキルなど多種多様なスキルが必要だとし、データサイエンティストは事例に合わせて最適なスキルを活用する「スペシャリストよりジェネラリスト」という言葉は印象的でした。 最後にデータサイエンティストのやりがいとして、様々なアプローチの中から一つを選択する「クリエイティブ」な側面、ビジネスとしての「人との関わり」という点、「新たなチャレンジ」を続けワクワクした日々を送れるという点を挙げ、より多くの学生に興味を持って欲しいというメッセージを伝えました。       アナリティクス活用領域の概要 リスク管理 続いて、リスク管理におけるアナリティクスの活用について、SAS Japanの柳による講演です。 最初にビジネスにおけるリスクについて紹介しました。リスクとは「不確実性」であると指摘し、その不確実性を想定の範囲内で「リスク管理」し「収益−損失の最大化」という目的を達成するためにアナリティクスが活用されていると紹介しました。 具体例として、金融機関における「規制対応のリスク管理」と「収益を上げるためのリスク管理」を挙げています。前者は政策等で一定の枠組みが決まっており事象の予測が行いやすく、アナリティクスが最大限活用されています。一方後者は変動が大きく様々なシナリオが想定されるため、経済情勢・社会情勢等に基づいた多様なモデルをもとにシミュレーションを重ね、意思決定の判断基準にしています。 最後に金融機関におけるAIの活用について紹介しました。業務の効率化や人的ミス排除等を目的とした従来のIT化とは異なり、人間では処理できないほど膨大となったデータを扱うために金融機関でAIを導入する動きが進んでいるとのことです。しかし、AIの思考がブラックボックス化され判断の説明可能性が低いという問題点もあり、AIの思考の透明性をどう保証するかが今後の大きな課題の一つであると伝えました。       SASの学生向けData Science 推進活動 最後に、学生のデータサイエンスの学びの場としてData for Good 勉強会とSAS Student Data for Good communityを紹介しました。Data for Goodとは様々な社会問題をデータを用いて解決する取り組みであり、これまでにも世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和をData for Goodの活動具体例として紹介しました。学生が主体となりこの活動をより推進するため、SASでは「Data for Good勉強会」と「SAS Student Data for Good Community」という活動を企画しています。 Data for Good 勉強会とは、SASやData Kind(Data for Goodを推進する社会団体)の実施したData

Data for Good | SAS Events | Students & Educators
0
第2回「データサイエンティストのキャリアと活躍のかたち」レポート

第1回に引き続き、データサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第2回が1/31(木)に開催されました。当日の様子について紹介します。 このセミナーはデータサイエンティストのキャリアと活躍の場や、ビジネスではアナリティクスがどのように活用されているかについて、スピーカーがこれまでの経験をもとに紹介するものです。 経営幹部候補としてのデータサイエンティスト はじめに、データサイエンティストのキャリアについて、コニカミノルタジャパン株式会社・松木さんの講演です。コニカミノルタジャパンでは、2016年にデータサイエンス推進室を設置し、コピー機の買替・故障・受注の予測などにデータ分析を活用しているそうです。 まず、成果を出せるデータサイエンティストのキャリア形成についての話です。この話題の中では「データサイエンティストとは経営幹部候補、すなわち分析・数理モデルで経営課題を解決できる人材である」という一文がとても印象的でした。松木さんは、ただ分析作業ができる・数理モデルを作成できるだけではなく、それらの優れた技術をツールとして経営課題の解決ができる人材というのがデータサイエンティストのあるべき姿と考えると言っていました。 次に、データサイエンティストに求められるスキルについてです。そのスキルとは主に、分析スキル・ITスキル・ビジネススキルに分けられますが、その中でもビジネススキルは他の2つに比べて教育が困難であり、知識と経験が必要です。そこで実際にコニカミノルタジャパンでは、分析・ITスキルをもつデータサイエンティストと、ビジネススキルを持つ他部署メンバーとが共同して分析を行う仕組み(=タスクフォースユニット)でデータサイエンティストのビジネススキルを補うことを行っているそうです。 こうして、組織単位で分析を進めるにあたって欠かせないのがコミュニケーション能力です。ここで言うコミュニケーション能力とは、単純に人と仲良くなれるという意味よりも、「相手を理解するための、幅広い知識を習得する」「相手が理解できるようにデータサイエンスの見える化をする」ことを指します。現場や他部署メンバーの考えを理解するためのビジネスにおける幅広い知識、データサイエンスの知見がない人でも一目でわかる環境の構築が必要であるとのことでした。   講演の最後には、「データサイエンティストは多種多様な専門性が必要である」というメッセージをいただきました。これまでの話にもあったように、数理モデルの開発といった場面は仕事の一部で、ビジネススキルやコミュニケーション能力を活用することでいかに他の社員に、現場に「みせる」かが重要であるということを学生に伝えていただきました。       ビジネスで活用されるアナリティクス “顧客理解” 次に、ビジネスで活用されるアナリティクスについて、SAS Japanの庄子による講演です。 「通信販売サイトから自分だけのクーポンが送られてきた」、「動画配信サービスに自分好みの動画がおすすめされる」、「携帯電話の学割があれほどまで安い」などといった例を挙げ、私たちが日常生活においてデータ分析の恩恵をどれだけ受けていると思うか?という質問を導入として講義は始まりました。また、消費者のうち64%は支払う金額よりもそのもの自体の質を重視するにもかかわらず、それを完璧に捉えることが出来ている企業はわずか6%であるという話もあり、顧客理解の重要性を直観的に感じることが出来ました。   顧客理解について、前半ではそのコンセプトの紹介です。 顧客理解とは何を理解するのか?代表的な3つの項目があります。 「顧客の優良度・リスク」:どの顧客が特に大事か、損をもたらす可能性が高いか 「顧客の嗜好」:個々に異なる顧客の好みに対して何を薦めるべきか 「顧客の行動」:顧客の生活パターンや生活圏等を考慮する この3項目について、携帯キャリアの顧客理解に関する施策を顧客の加入から解約の流れに沿って例示していました。 後半は具体的に3つの項目についてどのような分析を行っているかについて、前半にもあった携帯キャリアの顧客理解に関連する具体的な施策に3項目をそれぞれ当てはめて紹介していました。ここではその一部を簡潔に紹介します。 「顧客の優良度」:生涯価値(Life Time Value)の算出(どれくらい先まで契約の継続をしそうか、機種変更はいつ頃しそうか) 「顧客の嗜好」:テキストを用いた趣味嗜好判定 「顧客の行動」:位置情報による生活圏の特定 最後には、「企業のデータ活用はまだまだ発展途上でみなさんの活躍が企業や世の中を大きく変える」という前向きなメッセージと、情報倫理のプライバシー懸念について「倫理観が大事”Don’t Be Evil”(by Google)」という助言の両方を学生に向けたメッセージとして伝えていました。   SAS student Data for Good communityの紹介 セミナーの最後には、学生のデータサイエンティストに向けた学びとしてSAS student Data for Good communityについて紹介しました。 「Data for Good」とは多岐にわたる社会的なテーマから課題を提示し、データを活用して解決しようとするものです。これまでにブログで紹介した世界の絶滅危惧種や通勤ラッシュ時の鉄道混雑緩和をData

Analytics | Students & Educators
SAS Japanによる小学生向けプログラミング教育: 玉川学園で体験授業を実施

私が小学生のころ、21世紀になると自動車は空を飛び、真空チューブの中のリニアモーターカーは時速2000kmに達するものだと思っていましたが、現在のような情報化社会は想像できていませんでした。初めてパソコンに触ったとき、何をするためのものなのかさっぱりわからなかったことを覚えています。 いまの小学生が大人になるころは、どのような社会になっているのでしょうか。10年先、20年先を想像することは難しいですが、子どもたちは、その社会で生きるための力を身につける必要があります。

Analytics
0
Data for Good: 満員電車をなくすことはできるか

前回のブログ記事では、Data for Good活動の一環として、世界の絶滅危惧種についての考察をしました。本記事では、朝ラッシュ時の鉄道混雑について考えます。 首都圏における鉄道の通勤通学時間帯混雑率は、長期的にみて改善されているものの180%を超える路線が11路線あるなど(2017年)依然として満員電車は解消されていません。不快感や身体の圧迫はもとより、多くの乗客が集中することで、混雑による遅延が発生しています。車両の増備、長編成化、新路線の建設などハード面の強化により大幅な改善を図ることができますが、すでに容量の限界まで運行している場合や、構造物の制約、費用、期間の面からもこれらの施策をすぐに実現することは難しいです。そこで今回は、通勤ラッシュ回避のために乗客が通勤時間をずらすオフピーク通勤の実施について調査し、混雑緩和につながるかを検証したいと思います。 オフピーク通勤(時差通勤)は、個人の自発的な行動によるものであり、多くの会社・学校の始業時間がほぼ同じであるため鉄道事業者が呼びかけても定着することはありませんでした。2016年に「満員電車ゼロ」を含んだ公約を掲げ当選した小池都知事は、公約の実現のためオフピーク通勤を推進するキャンペーンである「時差Biz」を2017年にスタートしました。このことについて、東京都のサイトには以下の文章があります。 満員電車の混雑緩和は、社会の生産性向上のための重要な課題のひとつです。 東京都では、通勤時間をずらすことによって満員電車の混雑緩和を促進する「時差Biz」を実施中です。 時差Bizの参加に資格や決まりはなく、皆様が一斉に取り組むことにより、大きな効果があることが見込まれます。皆様のご参加、お待ちしております。 サイト内では、個人に対して時差通勤を推奨し、企業に対してフレックスタイム制やテレワークの導入などを推奨しています。参加企業は916社、鉄道事業者が集中取組期間中に臨時列車を運行するなど活動の広がりがみられますが、見込まれる効果は未知数なうえ関連するデータや分析結果も乏しいです。そのため簡単ではありますが、オフピーク通勤の効果の有無や程度を具体的に算出します。 まず、平成29年度の首都圏31区間におけるピーク時混雑率を示します。混雑率は、一定時間内の輸送人員(実際に輸送した乗客の数)を輸送力(車両の定員数の合計)で割ったものであり、最も高い東京メトロ東西線(木場→門前仲町)は199%と定員のほぼ2倍の人を乗せています。唯一100%を下回ったのは、JR東日本中央緩行線(代々木→千駄ヶ谷)で、混雑率は97%でした。 輸送人員と輸送力に注目すると、中央快速線の81,560人を筆頭に輸送人員が60,000人を超える路線が13路線ある一方で、輸送力は最も大きい小田急小田原線でも49,416人と大きな差があります。また、ピーク時の運行本数と編成数をみると、多くの路線で10両もしくはそれ以上の車両を2~3分おきに運行していて、これ以上輸送力を強化することは難しいです。 ここからは、オフピーク通勤の効果を検証するため、2つの仮想シナリオが実現した場合の結果を計算します。 1.時差通勤のみ 平成29年度から新たに追加された調査データを利用します。これは、首都圏36区間のピーク時と前後1時間の混雑率を算出したものです。 路線によってピーク時が違うため6:17~7:17から9:02~10:02まで約4時間にわたる混雑率を時間帯の早い順に並べたものが以下のグラフです。路線ごとのばらつきが大きいですが、3等分すると中心部が最も高くなり、ピークより前、ピークより後の順で混雑率が低下しています。このことは始業時間が決まっている場合、それを守るように通勤・通学する人が多いという説明ができるでしょう。 それぞれの路線についてピーク時と前後1時間の合計3時間の輸送人員と輸送力を算出し、そこからピーク時と前後1時間の3時間混雑率を算出したのが(例:ピーク時が7:30-8:30の場合、6:30-9:30の輸送人員/6:30-9:30の輸送力)、以下のグラフです。 混雑率をみると、すべての路線で国が目標としている180%を下回り大きく混雑が緩和されています。このことから、乗客の均等な利用を促す時差通勤は混雑率の低下につながるでしょう。 2.時差通勤+前後時間帯の増発 ピーク時と前後1時間の輸送人員と輸送力を時間帯ごとに示したのが以下のグラフです。ピーク時を中心に山ができていて、多くの乗客がピーク時に集中していることがわかります。 また、それぞれの路線でピーク時の輸送力を前後1時間においても実現した際のシナリオをもとに3時間混雑率を算出しました。(例:ピーク時が7:30-8:30の場合、6:30-9:30の輸送人員/(7:30-8:30の輸送力)×3)その結果、すべての路線で混雑率が150%を下回り、そのうち7路線は100%を下回りました。 しかし、ピーク時の前後1時間の輸送力を増強するためには列車の増発が必要で、鉄道事業者には新たなコストが発生します。このコストに見合うだけの効果が見込めなければ、事業者にとって列車を増発するインセンティブがありませんが、新倉(2009)によると、 増発による増加コストと混雑緩和による利用者便益を試算した結果、両者はほぼ同額でした。また、有料着席列車を導入することで、料金収入によって増加コストを賄うことが可能であるとし、列車の増発は双方にとってメリットがあると示しています。 首都圏36区間のデータからの計算結果をまとめると、ピーク時1時間の混雑率平均は165%でした。(最混雑区間は東京メトロ東西線木場→門前仲町:199%)また、ピーク時と前後1時間を加えた合計3時間の混雑率平均は143%となりました。(最混雑区間は、JR東日本横須賀線武蔵小杉→西大井:177%)そして、ピーク時の輸送力を前後1時間においても実現した場合には、合計3時間の混雑率平均は113%となることがわかりました。(最混雑区間は、東急田園都市線池尻大橋→渋谷:142%) 混雑と遅延の関係 つぎに、遅延証明書の発行状況に関するデータを利用して混雑との関係を調べます。東京圏(対象路線45路線の路線別)における1ヶ月(平日20日間)当たりの遅延証明書発行日数が記載されていて、平成28年度の1位は中央・総武線各駅停車の19.1日です。遅延証明書発行日数が10日を超えるのは45路線のうち29路線で、遅延の発生が常態化しています。 下の散布図は、先ほど使用した混雑率のデータと遅延証明書発行日数を組み合わせたものです。両者には正の相関がみられ、遅延が頻繁に発生している路線ほど混雑率が高くなっています。 遅延の発生は何によって説明されるかを明らかにするため、「混雑率(%)」「列車本数(本/h)」「営業キロ(km)」「他社乗り入れの有無(0or1)」の4つの変数を用いて回帰分析しました。分析の結果、混雑率のみが有意に正の影響を及ぼしていました。 上記データには遅延原因の記載もあり、大規模な遅延(30分以上の遅延)は、人身事故、車両・施設の故障、自然災害が原因である一方、小規模な遅延(10分未満の遅延)は、乗車時間超過が全体の47%を占め、ドアの再開閉が16%でした。これらは利用者の集中によるもので、オフピーク通勤によって混雑が緩和されれば、遅延の発生も減少することが予想されます。そして遅延が原因となっていた混雑の減少が見込まれます。 結論 結果をまとめると、計算上はオフピーク通勤・通学は混雑率の低下につながりますが、実現するには多くの人々の行動を変えなければなりません。そのためには、企業や学校の始業時間を分散させることや柔軟な勤務体系の導入などが必要です。理想的なのは6時台から9時台までムラのない通勤・通学ですが、数十万人が現在の出社・登校時間を変更することになり、さらなる取り組みの拡大が不可欠だといえるでしょう。また、オフピーク時における列車の増発は大幅な混雑緩和につながりますが、増加するコストの負担が課題であり、追加的な調査が必要です。そして、混雑と遅延については互いに影響し合い、一方が減るともう一方も減るという関係があるので、遅延対策の推進も混雑の緩和に寄与することがわかりました。 以上 SAS Visual Analytics 8.3 を用いて朝ラッシュ時におけるオフピーク通勤の有効性検証と混雑と遅延の関係について分析しました。SAS VAの各種使用法については、こちらのブログのシリーズでご説明しております。併せてご参照ください。 SAS Japanでは、学生がData for Goodを行うコミュニティ「SAS Japan Student Data for Good community」を発足します。目的としては、社会問題へのアプローチを通してData Scienceの流れの経験・スキルの向上、学生間の交流拡大、社会への貢献の達成があります。主な活動はふたつに分けられ、一つは社会課題の解決に向けたデータ分析で、オンラインでの議論や定期的な集まり、作成したレポートの公開、アクション(施策)の提案をします。もう一つは、イベント参加で、データサイエンスに関する講演への参加、データ分析コンペ出場、勉強会をすることを予定しています。これまで大学の講義や自習で学んだスキルの実践・アウトプットの場になるうえ、議論をしながらプロジェクトを進めることができます。(知識・アイデアの共有、その他参加者同士の交流)これは大人数の講義や独学ではできないですし、最終的には社会貢献にもつながります。 興味をお持ちでしたら以下のアドレスまでご連絡ください。みなさんの参加をお待ちしています。 JPNAcademicTeam@sas.com

Analytics
0
Data for Good: 人間の経済活動は生物を絶滅に導くのか?

“Data for Good”という言葉をご存知でしょうか。これはデータを活用して社会的な課題を解決しようとする活動です。SAS Japanでは”Data for Good”を目指した取り組みを展開しております。その一つとして、SASはData for Good活動をする学生コミュニティ、「SAS Japan Student Data for Good community」を発足します。これは、社会問題へのアプローチを通して、Data Scienceの流れの経験・スキルの向上・学生間の交流拡大・社会への貢献などの達成を目的とするコミュニティです。 このコミュニティのData for Good活動の一環として、本記事では世界の絶滅危惧種についての分析をご紹介します。 現在、世界中で何万種もの生物が絶滅の危機に瀕しています。個体数を減らすこととなった原因はもちろんそれぞれの生物によって異なるでしょうが、主たる原因は人間による環境破壊や開発であると言われています。確かに人間の活動が生物に悪影響を及ぼしうることは直感的に正しいと感じられますし、また、仮にそうだとすれば、人間の開発活動を示す値と絶滅危惧種の数には何らかの具体的な関係があるはずだと考えられます。そこで、今回は、国ごとの絶滅危惧種数や開発指数を用いて、それらの関係を調査します。 今回の調査ではSAS Visual Analytics 8.3を用いてデータ分析を行いました。 今回使用したデータのリストはこちらです。 総人口 (World Bank Data) https://data.worldbank.org/indicator/SP.POP.TOTL 面積  (World Bank Data)  https://data.worldbank.org/indicator/AG.SRF.TOTL.K2 人口増加率 (World Bank Data) https://data.worldbank.org/indicator/SP.POP.GROW CO2排出量 (World Bank Data) https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=1W 一人当たりCO2排出量  (World Bank Data) https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=1W GDP  (World

Data for Good | SAS Events | Students & Educators
0
第1回「データサイエンティストのキャリアと活躍のかたち」レポート

先日、-データサイエンティストに求められる「本当の役割」とは-のブログ記事内で紹介されたデータサイエンティストを目指す学生向けのセミナー「データサイエンティストのキャリアと活躍のかたち」の第1回が11/30(金)に開催されました。この記事では、当日の様子をお伝えします。 セミナーの内容は、データサイエンティストのキャリアと活躍の場や、ビジネスではアナリティクスがどのように活用されているかについて、スピーカーがこれまでの経験をもとに紹介するものです。今回は初回のセミナーということで、講演前にSASが学生向けに実施している取り組みの紹介と、データサイエンティストの役割であるデータを利用しビジネス課題の解決を図るという一連の流れを確認しました。   データサイエンティストに必要な資質 はじめに、データサイエンティストのキャリアについて株式会社GEOJACKASS大友さんの講演です。大友さんは、複数の企業・大学でのデータサイエンス業務の経験がある方です。 まず、JAXAに勤務していたときの業務内容の一例ということで、月周回衛星「かぐや」と小惑星探査機「はやぶさ」のデータを扱って周回軌道の可視化などに携わっていたことを実際の画像とともに説明していました。そして、データサイエンティストの業務の大部分は可視化とデータクレンジングを含む集計作業なので、まずは可視化から始めることを意識してほしいとのことでした。 つぎに、趣味の釣りを題材としたデータ分析の話です。釣りは常に一定の成果が得られるわけではなく、全く釣れない日もあれば、突然100尾釣れる日が続くこともあります。この急上昇する時期をピンポイントで当てようとデータをもとに予測システムを構築することを考えていました。そこで釣果予測をするために観測衛星から海水温、海上風速のデータ、海上保安庁から海流のデータを収集し、自治体の管理公園やTwitter、釣具屋にアップされている情報から過去の釣果実績のデータを収集してこれらを一括で管理する仕組みをつくりました。 こうして収集、整形したデータを利用した分析結果をもとに、宮城にヒラメ釣りに行くと、8枚釣ることができたそうです。また、そのほかの魚も大漁でした。ちなみにヒラメは一度の釣りで1枚釣れたら良いと言われているそうです。このシステムは開発途中とのことですが、仕事ではなくても趣味でデータサイエンスの実践は可能だということです。さいごに、この釣果予測で使った気象データが、仕事であるデータサイエンス業務のなかで役立ったケースを挙げ、自分の趣味、好きなことややりたいことを追求するのが最も大事なことで、技術はあとからついてくる。つまり、まずは目的を持つことが重要だというメッセージを学生に強く伝えていました。   データ活用とアナリティクス・ライフサイクル つぎに、ビジネスにおけるアナリティクスについてSAS Japanの畝見による講演です。 導入では、アナリティクスに関するキーワードである「機械学習」「ディープラーニング」「人工知能(AI)」などを一枚の図に整理し、それぞれの単語について説明をしていました。 前半は、ビジネス課題の解決にアナリティクスが活用されている事例の紹介です。「顧客理解・マーケティング分析」分野では、ダイレクトメールの配信を効果的にするためにどういった顧客をターゲットにすればよいかを探索する事例、商品の購入履歴や商品への評価をもとに顧客へおすすめ商品を提案するため用いられている決定手法の説明がありました。「不正検知」分野では、マネーロンダリングなどの不正行為を検知するために用いられている複数の手法の説明があり、「品質管理・異常検知」分野では、教師なし学習による異常検知の説明と、実際に航空会社においてエンジン部品故障を予測するために部品のセンサーデータを利用し、修理が必要な状態になる20日以前に故障の予兆を検知し可視化することを実現した事例の紹介がありました。また、品質管理ではブリヂストンにおけるタイヤ生産システムを自動化し品質のばらつきを低減した事例や、ある半導体メーカーは、従来の品質管理の取り組みに加え、ディープラーニングを取り入れた画像認識技術を追加して品質管理を強化しているなどアナリティクスの進化が応用されている事例の紹介がありました。 他にも、スポーツ関連企業では、スタジアムにあるカメラでサッカー選手の背番号を撮影し、各選手のパフォーマンスを分析するため、ディープラーニングによる画像認識が用いられているなどさまざまな業務・業種でアナリティクスが利用されているとのことです。 後半は、AIとアナリティクス活用の課題と対策についての話です。まず、とある企業でAI・機械学習を導入するプロジェクトがうまくいかなかったストーリーを提示して、データ活用とアナリティクスで成果を出せない理由を以下の3つに分類しています。 データハンドリングの課題(取得・加工・品質・準備) モデリングの課題(スキル課題や結果の一貫性など) モデル実装の課題(価値創出とガバナンス、実行と評価) ここで、「データ活用とアナリティクスで成果を出す=ビジネス課題の解決」には、 Data:アクセス、クレンジング、準備 Discovery:探索、分析、モデル生成 Deployment:モデル管理、組み込み、モニタリング の一連のプロセスからなる循環的な取り組み(アナリティクス・ライフサイクル)が必要だとし、ひとつひとつのステップについての説明がありました。そして、ビジネス価値の創出には、「"問い"→データ準備→探索→モデリング→"問い"→実装→実行→評価→"問い"」という8の字のアナリティクス・ライフサイクルも効果的であるという説明がありました。 さいごに、データサイエンティストの役割として求められることはビジネス価値の創出に貢献することで、そのためにはアナリティクス・ライフサイクルを迅速かつ丁寧に進めることが重要だと伝えていました。   SAS student Data for Good communityの紹介 セミナー内では、学生によるデータサイエンスの学びの例ということで、データを活用して社会的な課題を解決する「Data for Good」への取り組みを発表しました。そして、学生が集まってData for Good活動をするサークル「SAS student Data for Good community」を発足することと、その活動内容や意義についての説明をしました。第2回セミナーで追加的な情報をお伝えする予定です。   講演のあとには、軽食をとりながら講演者と参加者で歓談をしました。さまざまな専攻・学年の方が参加しており、講演者への質問や参加者どうしの会話が絶えず貴重な交流の場となりました。   次回の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」は1月31日(木)に開催予定です。みなさんの参加をお待ちしております。  

Students & Educators
データサイエンティストに求められる「本当の役割」とは

最近、SNSなどで「AI開発ミステリー ~そして誰も作らなかった~」という記事が話題になりました。人工知能(AI)を導入しようという企業の最悪の顛末をコミカルに描いたジョーク・ストーリーですが、これを面白がる人が多いというのは、多少なりとも日本のIT業界の現実を反映しているのかもしれません。 このような事態になっているのは、AIに対する過度な期待が原因の一つかもしれません。AIは、機械に任せれば素晴らしいことが起こる魔法ではなく、明確に定義されたタスクを実行するように機械をトレーニングする方法です。人間が行うタスクを機械が代替することになるのですが、人間が活動しているシステムのなかで、どの部分を機械にやらせるかを考え、実装し、運用しなければなりません。これは、これまでSASが実現してきたアナリティクスの延長にほかなりません。 「AIが発達すればデータサイエンティストはいらない」という説もあります。データサイエンティストが機械学習を実装する役割だけを持つのであれば、そうかもしれません。しかし、本当に必要とされる仕事が「人間が活動するシステムの中でのアナリティクスの活用」であるなら、まさにAIが使われる仕組みを考え、実装し、運用できる状態にする人材こそが求められているのではないでしょうか。 今年5月、SAS Forum Japan のなかで開催された「データサイエンティスト・キャリア・トラック」では、アナリティクスを活用する組織のなかでデータサイエンティストがどのように活躍するかについて、企業の方々から学生向けの講演をいただきました。例えば、ITや数理モデルを使いこなせることは初級レベルで、ビジネススキルを身に着けながら、最終的には経営幹部候補となるキャリアパスを提示している組織や、一方で、趣味で培ったスキルをビジネスに生かすデータサイエンティストがいます。このように、データサイエンティストのキャリアは組織・個人によってさまざまですので、多様人材がそれぞれの強みをもって活躍することができそうです。 しかし、どの組織・個人でも共通しているのは「目的志向」である点です。何のためにデータ分析をするのか、それがどのような価値を持つのかを明確にしなければ、課題解決のためのデータ分析はできません。データサイエンティストは単にデータ分析の技術で課題解決するだけでなく、「課題設定」をする役割を持たなければ本当の価値は生み出せないのです。そもためには、さまざまな問題意識を抱える人たちと異業種交流をするなど、幅広い視野が必要となりそうです。 データサイエンティスト協会が示した3つのスキルのうち、「ビジネススキル」については、ときどき「ドメイン知識」(業界や業務についての知識)として紹介されることがあります。しかし、本当に必要なのは、その知識を解決すべき課題に変換する力だと考えます。データサイエンティストを目指す学生が、すべての業界・業務についての知識を得ることは難しいですが、アナリティクスが活用される代表的な業界において、どんな課題がどのようにアナリティクスにより解決されているかを知ることで、応用力を身に着けられるのではないでしょうか。そこで、SAS Japanでは、次のような内容の学生向けセミナー「データサイエンティストのキャリアと活躍のかたち」をシリーズで開催します。 データサイエンティストのキャリア ... 「データサイエンティスト・キャリア・トラック」の講師陣による、それぞれの組織や個人としてのデータサイエンティストのキャリアや活躍のかたちを紹介 ビジネスで活用されるアナリティクス ... データサイエンスやアナリティクスがどのような業界のどんな課題を解決するために活用されているかをSAS社員が紹介 学生によるデータサイエンスの学び ... 学生がどのようにデータサイエンスを学習しているかを学生自身による体験を交えながら紹介 第1回は11月30日(金)に開催します。データサイエンティストを目指す学生の皆様のご参加をお待ちしています。

Analytics
0
和歌山県データ利活用コンペティション参考資料(8) 都道府県を行政基盤でグループ分けする (クラスタリング )

前回の記事では、SAS Visual Analytics を用いて時系列データを扱う手法をご説明しました。第7回目となる本記事では、データをグループ分けするクラスタリングについてご紹介します。 クラスタリングとは、多様な特徴を持つデータ群の中から、似通った性質を持つサンプルを抽出しグループ化する機械学習手法です。例えば、顧客をクラスタリングし、各クラスターの特徴(年齢・嗜好等)に合わせた適切なDMを送る、などの活用例があります。本記事では、行政基盤の性質に基づき都道府県をクラスタリングします。本ブログのシリーズの第3回・第5回にて同じデータを異なる手法で分析しておりますので、併せてご参照ください。 本記事では、総務省の「社会・人口統計体系 都道府県データ 社会生活統計指標 :D 行政基盤」のデータを使用しました。   SAS Visual Analytics 8.3 におけるクラスタリング分析 from SAS Institute Japan   本例で作成したクラスターの数は5つですが、オプションから数の変更ができます。特徴量のビンの数も同様に変更可能です。 さて、今回使用した5つの変数は第3回・第5回の記事の分析で、人口増減率に影響を及ぼすとされた要素でした。スライド内クラスター2のラインをご覧ください。財政力指数は低いものの、土木費割合が高いという特徴を共有するクラスターであると読み取れます。これは、第5回の記事のディシジョンツリーを用いた分析によると、財政力が弱いにも関わらず人口増減率が高い自治体の持つ特徴でした。したがってクラスター2内の要素の人口増減率が高い傾向にあることが予想されます。また最も要素数の多いクラスター5についてですが、どのビンにおいても概ね中程度の値を取っており、平均的なクラスターであるとみなせます。このようにクラスタリングによってデータを分類し、各クラスターの特徴に着目することで、データをより分析しやすくすることが可能です。   ここで、SAS Visual Analytics におけるクラスタリングに使われている手法、k-means法の仕組みついてご紹介します。ここではn個のデータをk個のクラスターに分類するとします。 1) n個のデータのうち最初のk個をクラスターの核とし、各データを一番近い核のクラスターに属するように分割します。 2) 各クラスターの重心を求めます。 3) 各データを、それぞれが一番近い重心のクラスターに属するように再分割します。 4) 再分割されたクラスターの重心を求め、(3)の操作をクラスターに変化がなくなるまで行います。 このように、最終的に変動がなくなったクラスターに基づきクラスタリングが行われています。 以上、クラスタリングの手法についてご説明しました。引き続き本ブログのシリーズでは、SAS Visual Analytics を用いた図表・グラフの作成や統計解析の方法について紹介いたします。ぜひご参照ください。 高校生・大学生を対象とした第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、奮ってご参加ください。(追記:募集は締め切られました)  

Analytics
0
和歌山県データ利活用コンペティション参考資料(7) 待機児童の有無は何によって決まるか (ロジスティック回帰)

第3回のブログでは、SAS Visual Analytics の活用例として統計解析のひとつである線形回帰を紹介しました。その続きのブログとなる今回は、ロジスティック回帰について説明します。 回帰分析は変数どうしの関係を分析することができます。そのなかでも以前紹介した線形回帰はシンプルでよく利用されますが、すべての場合において最も適当な分析手法であるとは限りません。たとえば、目的変数が離散的な場合(例:喫煙の有無、就業状態、移住の意思)には、ロジスティック回帰のほうが当てはまりのよい結果を得ることができます。本記事では、ロジスティック回帰を用いて待機児童の有無に影響を与える変数の分析を紹介します。 このスライドでは、厚生労働省が公開している保育所等関連状況取りまとめ(平成30年4月1日)から申込者の状況についてのデータと、総務省が公開している平成28年度地方公共団体の主要財政指標一覧から全市町村の主要財政指標を利用しました。データのインポートについてスライド内でも説明していますが、インポートの際の注意点など詳細に関してはこちらのブログを参考にしてください。 SAS Visual Analytics 8.3 におけるロジスティック回帰の利用 from SAS Institute Japan ロジスティック回帰オブジェクトでは、自動的に最適なモデルが選択されます。オブジェクトを最大化し、詳細を表示すると使用したモデルを確認することができます。 スライド内の分析では、ロジットモデルを使用していました。 また、詳細からは当てはめの統計量、パラメータ推計値などの情報を確認することができます。 今回の分析結果の解釈として、待機児童の有無に影響を与えている要因は「財政力指数」「経常収支比率」「ラスパイレス指数」「実質公債費比率」でした。それぞれの変数についてパラメータ(効果量)推定値をみると、「財政力指数」が最も大きい正の値(2.49)となっており、「財政状況のよい市区町村ほど待機児童が発生しやすい」といえます。対して「申込者数」の推定値は(5%有意であるものの)0.000094と非常に小さく、申込者数の多寡が待機児童の有無に与える影響は小さいと言えます。ここから、自治体規模の大小と待機児童の有無は関係していないと推測できます。 そのほかのパラメータをみても、財政状況がよいほど待機児童がいることが分かりますが、ここから単純に「待機児童を減らすためには、財政状況を悪化させればよい」ということにはなりません。たとえば、待機児童が多い自治体では共働きが多く、結果として住民税収が増加し財政状況がよくなるなど、さまざまなストーリーを想定することができます。回帰分析から因果関係を主張するときには注意が必要です。 この分析では、財政指標を利用しましたが、他にも女性の就業率、出生率、世帯構成などのデータを利用するとより効果的な分析ができるでしょう。データセット内に2値の変数がない場合でも、スライド内の例のように自分で基準を決めることで新しい変数を作成することができます。これによって分析の幅が広がりますが、レポートには必ず変数の定義を記述してください。 引き続き本ブログのシリーズでは、図表・グラフの作成や統計解析の方法について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしています。(追記:募集は締め切られました)

Analytics | SAS Events | Students & Educators
SAS Global Forum 2019 で発表しよう(学生向けプログラムあり)

全世界のSASユーザーが集う年次のイベント SAS Global Forum。 次回は2019年4月28日から5月1日まで、米国テキサス州ダラスで開催予定です。 現在、SAS Global Forum 2019での発表演題を募集しています。 本イベントは、600を超えるセッションでワークショップ、プレゼンテーション、e-ポスター、デモおよび交流プログラムが用意されており、アナリティクス活用についての事例やテクノロジーが多数紹介されます。昨年は5400人もの登録者があり、世界中のデータサイエンティストと情報交換が可能です。(2017年の様子を過去のブログで紹介しています。その1, その2, その3) 学生向けのプログラムも用意されており、多くの大学生・教育関係者が参加します。 Student Ambassador Program ... 「学生大使」として無料でイベントに招待(旅費や宿泊代もサポートされます!) Student Symposium ... 学生がチームで戦うコンテスト。ファイナリストはイベントに招待されます。 Academic Summit ... 学生と教育関係者向けの講演と交流プログラム。昨年、参加した日本の学生によるレポートはこちら。 ビジネスやアカデミアのユーザーが一堂に会するグローバルイベントで、学生が自身の分析・研究・提案を発表することで、ビジネスやアナリティクスの専門家からのフィードバックにより自身のアイデアを深めると同時に、国際的にネットワークを広げることができます。 まずは、10月22日の締切までにアブストラクトを投稿しましょう! SAS Japan アカデミア推進室では、投稿に向けて学生の皆さんをサポートいたします。 興味のお持ちの方は JPNAcademicTeam@sas.com までご連絡ください。

Analytics
0
和歌山県データ利活用コンペティション参考資料(6) 訪日外客数・出国日本人数の傾向と予測 (時系列データの利用)

これまでのSAS Visual Analytics 活用例では、一時点のデータを表やグラフに示し、分析していましたが、統計データには毎年、毎月や四半期ごとに集計されているものが多くあります。そこで今回はデータのなかに時間情報が存在する時系列データの操作について説明します。 時系列データには国や地方自治体が公表しているデータに加え、気象情報、商品の売上、株価、為替レートなど様々なデータがあります。時系列データを利用することで、過去の傾向やパターンを把握したり、将来はどうなるのか予測することができます。SAS Visual Analytics のオブジェクトには、時系列データではないと作成できないものがあり、その中でも今回は、二軸の時系列プロットと予測の利用例を説明します。 このスライドでは、日本政府観光局(JNTO)が公開している「年別 訪日外客数・出国日本人数・国際旅行収支(IMF方式)の推移」を利用しました。このファイルには、1959年から2016年までの年ごとの訪日外客数、出国日本人数とその伸び率、国際旅行収支のデータがあります。データのインポートについてスライド内でも説明していますが、インポートの際の注意点など詳細に関してはこちらのブログを参考にしてください。   SAS Visual Analytics 8.3 における時系列データの利用 from SAS Institute Japan   予測オブジェクトでは、自動的に最適な予測モデルが選択されます。オブジェクトを最大化し、詳細を表示すると使用された予測モデルを確認することができます。 スライド内の予測では、ARIMAが使用されていました。 また、データ役割からWhat-If 分析を選択すると、シナリオ分析とゴール探索を実行することができます。シナリオ分析では、要因の値を設定することで、予測値がどれくらい変化するかを確認できます。ゴール探索では、予測の目標値を設定することで、その目標を達成するために必要な要因の値を決定することができます。 今回スライド内で紹介したほかに時系列データを利用するオブジェクトとしては、時系列プロットと比較時系列プロットがあります。作成したオブジェクトを右クリックするとメニューが表示されるのでそこから変更することができます。 引き続き本ブログのシリーズでは、図表・グラフの作成や統計解析の方法について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしています。(追記:募集は締め切られました)

Analytics
0
和歌山県データ利活用コンペティション参考資料(5) 人口増減率に影響を与える行政基盤の解明 (ディシジョンツリー)

本ブログのシリーズでは、SAS Visual Analyticsを用いた図・グラフの作成や統計解析についてご紹介しています。第5回目となる今回は、ディシジョンツリーを用いた分析方法をご説明します。 第1回和歌山県データ利活用コンペティション:大学生の部の課題は「人口減少問題を解決するための施策」でした。前々回の記事では、各自治体の行政基盤が人口増減率に与える影響を線形回帰を用いて評価しました。この手法は説明変数の与える影響の大きさを定量的に評価できるものの、各説明変数間の関係の読み取ることは困難でした。そこで本記事では同じ題材を用いて「ディシジョンツリー」による分析方法をご説明します。ディシジョンツリーでは、各説明変数が目的変数に及ぼす影響を階層ごとに分析することができます。 前々回の記事と同じく、総務省の「社会・人口統計体系 都道府県データ 社会生活統計指標 :D 行政基盤」と「人口推計:都道府県別人口増減率-総人口」のデータを使用しました。 SAS Visual Analytics 8.3 におけるディシジョンツリーの利用 from SAS Institute Japan   今回の分析において、人口増減に最も大きな影響を与える要素は「財政力指数」でした。都市部など財政力が強い地域の人口が増加しやすいことは感覚的に自然な結果でしょう。 注目すべきは、財政力指数が低い自治体において次に大きな影響を与える要素が「土木費割合」であったことです。無論インフラの整備は市民の暮らしやすさに欠かせない要素ですが、人口増加につながる理由としては、「公共事業による雇用の創出」と捉えることが適切でしょう。今回は行政基盤のみを説明変数に設定しましたが、有効求人倍率や最低賃金等、市民の生活や労働に関連する要素を説明変数に据えることで、より詳細な分析が可能であると予想されます。第一回和歌山県データ利活用コンペティションのサイトにこのテーマに関する優秀作品が掲載されておりますので、ご参照ください。 ディシジョンツリーによる分析は、説明変数が目的変数に及ぼす影響や各説明変数間の関係が理解しやすいというメリットがありますが、モデル作成時に用いたデータに過剰適合し汎化性能が低いというデメリットもあります。目的に応じてツリーの枝数や階層数を適切に調整するようにしましょう。 以上、ディシジョンツリーを用いた分析手法についてご説明しました。本ブログのシリーズの他の記事もぜひご参照ください。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしております。(追記:募集は締め切られました)      

Analytics
0
和歌山県データ利活用コンペティション参考資料(4) 育児と仕事の関係を考察する (クロス集計表と可視化)

前回のブログでは、統計解析の一例として、線形回帰分析の方法をご紹介しました。今回はデータを用いてクロス集計表(分割表)を作成し、円グラフ・棒グラフに可視化する方法をご紹介いたします。 第1回和歌山県データ利活用コンペティションでテーマに挙げられていた「人口減少問題を解決するための施策」をテーマに分析をします。人口減少の原因に女性の社会進出に対する意識が影響しているのではないかと考えました。もし、まだ子育てをしていない女性が育児と仕事を両立したくてもそれが難しいと感じるようでしたら、このことは人口減少の障害になりかねません。そこで、就業希望者と求職者について男女・育児活動の有無を項目にし、関連性を探りました。   以前、データのインポート方法を紹介したブログで利用した総務省統計局の平成29年 就業構造基本調査 都道府県編  「男女,育児の有無・頻度・育児休業等制度利用の有無,年齢,就業希望の有無・求職活動の有無別人口(無業者)-全国,全国市部,都道府県,都道府県市部,政令指定都市」のデータを利用します。 データのインポート方法に関する記事は過去のブログ記事をご参照ください。 SAS Visual Analytics 8.3 におけるクロス集計表の作成と可視化 from SAS Institute Japan 作成したグラフから、女性の中でも育児活動の有無により求職者数にはあまり差がない一方で、就業希望者数は育児活動をしている女性の方が多いことがわかります。このことから、子育てをしている女性は仕事をしたいとは思っても実際には求職活動を行っていないということがわかります。 今回のように男女・育児活動の有無など質的変数同士の関係を考察する場合、データをクロス集計表にまとめると分析がしやすくなります。また、インポートしたデータの中から必要なものを取り出すためにフィルタを活用することが効果的です。グラフを作成する際は、軸にどのようなカテゴリを選択するか、メジャーには何を用いるかなどについて自分の分析したい目的に合わせて考えてみてください。 引き続き本ブログのシリーズ Visual Analyticsを用いた図・グラフの作成や統計解析について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしております。(追記:募集は締め切られました)

Analytics
0
和歌山県データ利活用コンペティション参考資料(3) 人口増減率に影響を与える行政基盤の解明 (線形回帰の利用)

前回のブログではSAS Visual Analyticsを用いて地図上にデータを表示するジオマップの作成方法をご紹介しました。本記事では統計解析の一例として、線形回帰分析の方法をご説明します。 第1回和歌山県データ利活用コンペティション:大学生の部の課題は「人口減少問題を解決するための施策」でした。人口減少の原因を把握することは、施策を決定するうえで重要な過程の一つです。社会福祉や育児支援等、さまざまな要素がその原因の候補として考えられますが、どの要素が原因として最も妥当であるかを判別するために、各要素が人口増減に与える影響を線形回帰により分析します。本記事では、都道府県ごとの人口増減率と行政基盤との関係を例にとり、線形回帰の分析方法をご紹介します。 今回使用したデータは、総務省の「社会・人口統計体系 都道府県データ 社会生活統計指標 :D 行政基盤」と「人口推計:都道府県別人口増減率-総人口」です。   SAS Visual Analytics 8.3 における線形回帰の利用 from SAS Institute Japan   データのインポート方法の記事はこちらです。 今回は連続型データの説明変数のみを分析しましたが、離散型データの説明変数も「分類効果」に設定することで分析可能です。また、説明変数同士に関係性がある場合は、それらを「交互作用効果」に追加します。 線形回帰のモデル評価において、「財政力指数」と「社会福祉費割合」のp値が有意水準0.05を下回っていたため、これらは説明変数として有効であると判断できます。「財政力指数」が高い自治体は多方面にわたり数々のサービスを提供可能で、「社会福祉費割合」が高い自治体は市民の生活の安定により多く貢献しています。これらのことから、市民の生活支援を充実させることが、人口増加のために行政のなすべき課題の一つであることがわかります。 しかし、今回作成した回帰モデルの決定係数は0.6995であり、依然として改善の余地が見受けられました。第一回和歌山県データ利活用コンペティションのサイトにこのテーマに関する優秀作品が掲載されておりますので、ご参照ください。 以上、線形回帰の方法をご説明しました。引き続き本ブログのシリーズではSAS Visual Analyticsを用いた図・グラフの作成や統計解析について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしております。(追記:募集は締め切られました)

Analytics
0
和歌山県データ利活用コンペティション参考資料(2) 宿泊施設の利用状況を地図上に表示して地域差を分析する (ジオマップ)

前回のブログでは、SAS Visual Analytics にデータをインポートする方法を紹介しました。こうしてインポートしたデータをもとに、さまざまな図表・グラフの作成や統計解析を実行することができます。本記事では地図上にデータを表示するジオマップの使い方を説明します。 第1回和歌山県データ利活用コンペティションでは、「観光客を誘客するための施策」と「人口減少問題を解決するための施策」が募集テーマとなっていました。施策を検討するためには、まず現状を把握することが重要です。観光客の誘客に関しては、年間の訪問者数、宿泊者数、消費額や訪問目的などが考えられます。人口減少問題に関しては、人口の増減率、年齢別の人口構成、転出先や転入元などが考えられます。これらのデータは地理情報を含んでおり、地図上に表すことで効果的な図を作成することができます。本記事の例では、和歌山県が属する関西地区の宿泊データを利用してジオマップを作成します。 まずは、観光庁の宿泊旅行統計調査から平成29年1月~12月分(年の確定値)の集計結果をダウンロードします。ダウンロードしたファイルをSAS Visual Analytics にインポートする方法は、前回のブログ記事を参考にしてください。 SAS Visual Analytics 8.3 におけるジオマップの利用 -宿泊旅行統計- from SAS Institute Japan ジオマップをもとに調査をすすめると、和歌山県の宿泊稼働率が比較的低い要因を知ることができました。客室稼働率を高めるには、季節変動を抑え、年間を通じて旅行者を集客することが重要であるといえそうです。 つぎに、第2回のテーマである「高齢者が活躍できる社会づくり」「UIターン就職・若者の定住促進」に関連するデータを利用した例です。このスライド内では、時系列データを利用したアニメーション形式のジオマップ作成を紹介しています。時系列データに関しての詳細は、こちらのブログ記事を参考にしてください。 SAS Visual Analytics 8.3 におけるジオマップの利用 -高齢者の就労- from SAS Institute Japan ジオマップを用いてデータを図示することで、地域比較がより分かりやすくなり時系列の変化も直感的に把握することができます。また、分析を進めるための手がかりともなります。今回のコンペティションでは地理情報を含むデータの利用が予想されますので、その際はぜひジオマップを活用してみてください。 引き続き本ブログのシリーズでは、図表・グラフの作成や統計解析の方法について紹介いたします。 第2回和歌山県データ利活用コンペティションへの参加も募集中ですので、高校生・大学生のご参加をお待ちしています。(追記:募集は締め切られました)

Analytics
和歌山県データ利活用コンペティション参考資料(1) データのインポート

SAS Japan と伊藤忠テクノソリューションズ株式会社は、第2回和歌山県データ利活用コンペティションに共同で協賛し、参加者に「データサイエンス教育プラットフォーム」を提供します。 このブログでは、データサイエンス教育プラットフォームの利用例をシリーズで紹介します。 本コンペティションは次世代のデータサイエンティストを育成することを目的に開催され、全国の高校生及び大学生が腕をふるいます。データサイエンス教育プラットフォームでは、プログラミングを知らない学生でもデータ分析ができるように、データの取り込み、集計、基本的な統計解析、高度な機械学習手法などをビジュアルなインターフェースで実行できる SAS Visual Analytics をWebブラウザから利用できます。

SAS Events | Students & Educators
SAS Global Forum Academic Summit レポート

4月8日から9日まで、米国コロラド州デンバーにおいて、年次のSASグローバルイベント「SAS Global Forum」が開催されました。 今年のSAS Global Forumには、2月に開催された和歌山県データ利活用コンペティションにてSAS賞を受賞した専修大学のチームを招待しました。 SAS Global Forumでは、毎回、学生・教員が参加するAcademic Summitが開催されますが、今年も4月8日に開催された本イベントをレポートいたします。

Learn SAS
動画で学ぶSAS ~チュートリアル・ビデオのご紹介~

SAS University Edition や SAS OnDemand for Academics は、教育・研究・学習目的に無償で使えるソフトウェアですが、使い方の学習には教材が必要だという方もおられると思います。もちろん、SASはソフトウェアに関する膨大なドキュメントをご用意していますが、「どこから始めたらいいの?」「英語ではちょっと…」という声もあるでしょう。 SAS Japanでは、SAS入門者の方向けに日本語字幕をつけたチュートリアル・ビデオ群をご用意しています。このビデオは、ほとんどが5~10分の短いもので、SASとは何かから始まり、SAS University Edition や SAS OnDemand for Academics のインターフェイスである SAS Studio の解説、他の環境との差、データへのアクセス、データの操作、グラフの作成、基本的な統計解析、時系列分析の手法をサンプルデータを使いながら説明しています。サンプルデータは、標準でSASに付属しているものや、オンラインドキュメントを参考にして作成するものなどがあり、どなたでも、どんな環境でも学習を開始することができます。 これらの SAS Studio の使用法の解説では、主に「タスク」とよばれる機能を用いた操作を行います。「タスク」は、「棒グラフの描画」や「分散分析」などの機能をプログラミングなしで利用するためのインターフェイスで、データやパラメータをマウス等で指定することで、SASのプログラム・コードが自動生成されます。もちろん、SASの機能を最大限引き出すために、ゼロからプログラムを書くことも可能です。自動生成されたプログラムを参考にしながら、SASプログラミングを学習することにも適しています。 実は、これらの日本語字幕付きのビデオは、SASのチュートリアル・ビデオのごく一部で、SAS Video Portal にはより多くのビデオが用意されています。ここでは、SAS製品の紹介や、操作法・プログラミングのチュートリアルに加え、SASのアナリティクスが実際の活用事例を紹介する Analytics in Action ビデオもご覧になれます。音声は英語のみですが、英語や日本語の字幕を表示できるものもあります。まずはビデオから、SASアナリティクスの世界を覗いてみませんか?

Analytics | Learn SAS | Students & Educators
SAS OnDemand for Academics 授業利用では使用できる製品が追加されます

前回、SAS OnDemand for Academics (SODA) の Course 機能を活用することで、授業準備の手間が軽減されることをご紹介しましたが、実は、Cource 登録にはもう一つのメリットがあります。 SODA は、SAS Studioを基本のインターフェイスとしていますが、Course 登録により使用できる製品が増えます。 SAS Enterprise Guide : ポイント&クリック操作によるWindowsアプリケーション SAS Enterprise Miner : GUIによるデータマイニング・ツール SAS Forecast Server : 時系列予測の自動作成ツール これらは、統計の学習よりも、実際のビジネス等の現場で素早く統計手法を適用するためのツールで、基礎を学習した上で、より応用に際して活用できるものです。

Analytics | Learn SAS | Students & Educators
SAS OnDemand for Academics を利用して授業準備の手間を削減しよう!

統計ソフトを大学等の授業で用いる際に問題となるのが、統一的な環境を用意することの難しさです。受講者全員が同じバージョンのソフトウェアを同じ設定で利用し、同じ場所にあるデータにアクセスするような環境を準備しないと、個々の環境の差異から発生する問題に対処するだけで授業時間が終わってしまうでしょう。 また、統計ソフトを利用した演習講義では、プログラミングが必要になる場面が多いと思います。しかし、少ない授業時間を割いてプログラミングに慣れていない学生にコーディングを教えることは、本来その講義で教えるべき内容を削ってしまいかねません。 ご存知の方も多いと思いますが、SASでは、教育・研究および個人学習目的の利用に限り、無償ソフトウェアを提供しています。ダウンロードしてローカルPCの仮想マシンにセットアップするタイプの SAS University Edition と、クラウド上のアプリとして実行するタイプの SAS OnDemand for Academics がありますが、後者を使うと、上述した統計ソフトを利用した講義における統一環境の準備の問題およびプログラミングの問題を解決することができます。 SAS OnDemand for Academics (以下、SODAと略します) の特徴は以下のとおりです。 クラウド上で実施するソフトウェアなので、インターネット接続さえあれば、PC環境を統一させる必要がありません。 教員はWebページ上で「Course」を作成することができ、学生がその「Course」に登録することで、教員が用意したデータに学生の環境からアクセスすることができます。 ポイント&クリックで操作できるインターフェイスにより、プログラミングせずに統計やデータマイニングの機能を利用することができます。   SODAの利用手順: まずはSODAに登録します。登録の方法は、SlideShareの資料を参考にしてください。(※Analytics Uのページがなければ、SODAのページにアクセスし、上記のスライド4から開始してください。) 教員の方は「Course」を作成してください。こちらのページのInstructorsセクションのドキュメントおよびビデオ「Upload Your Course Data」「Invite Students to Your Course」を参考にしてください。 学生は教員から「Course」に参加するためのリンクを取得し、こちらのページのStudentsセクションを参考にCourseに参加してください。   SODAを利用すれば、無料で環境構築・プログラミング教育のためのコスト・リソースを削減し、統計スキルの教育・学習に集中できます。Let’s teach & learn data science!    

Students & Educators
日米の「STEM教育」はどれだけ違う?

みなさんは「STEM」という言葉をご存知でしょうか。 これは、Science, Technology, Engineering, Mathematics の頭文字を合わせた言葉で、いわゆる「理系」から医学・薬学を除いたものをイメージすれば分かりやすいでしょう。 近年、ビッグデータ、データサイエンス、人工知能という言葉がバズ・ワード化していますが、それらを扱う人材の確保のために、「STEM人材育成」「STEM教育」の重要性が叫ばれています。日本は、米国に比べてこれらのデータ活用分野の遅れがあると言われていますが、STEM教育についてはどうでしょうか。 平成28年の日本の学生数の分布を見ると、工学16%、理学3%の19%の学生がいわゆる「STEM学部」に在籍していると言えます。一方、全米教育統計センターのデータを見ると、2014-2015年の学部の学位数は、8.5%がNatural science and mathematics (理学に相当)、9.2%がComputer science and engineering (工学に相当) となっています。全学生に対するSTEM教育を受ける学生の割合としては、日本と米国であまり差は無いようですが、工学と理学の割合が大きく異なり、日本は圧倒的に工学のほうが多くなっています。これは、日本が「ものづくりの国」である(あった!?)ことに由来するかも知れません。 閑話。 意外かもしれませんが、STEMには「心理学」も含まれています。「心理テスト」や「カウンセリング」のイメージが強い心理学ですが、実は、これらは心理学の一部分で、特に「実験心理学」と呼ばれる領域では、人間(場合によっては動物)の心理・行動について実験によりデータを集め、統計学を駆使して解析を行います。データサイエンティストをお探しの人事担当者さま、心理学専攻の学生は狙い目かも!? 閑話休題。 データを見る限り、日本でSTEM教育を受ける学生の割合は、米国と比較して圧倒的に少ないわけではないようです。OECDにおける学習到達度調査でも、義務教育修了段階の科学リテラシーや数学的リテラシーは、日本は国際的に上位グループに属しています。それでは、ビジネスにおけるデータ活用分野で、STEM人材活用が遅れているとされる理由は何でしょうか。 もしかしたら、それは大学の質にあるのかもしれません。米国ノースカロライナ州立大学の Master of Science in Analytics (MSA) では、アナリティクスの即戦力となる人材育成を進めています。まず注目していただきたいのは、就職に関するレポートをはっきりとデータで示していることです。特に、この修士号を取ることの投資対効果(ROI)を算出し、「21ヶ月で元が取れる」「3年のROIは$127,500」と、このプログラムに参加することの意味を、就職先を見据えて提示しています(上記レポートp.10)。逆に言えば、MSAに入学する学生は、アナリティクスの世界で活躍することを最初から目指しており、学習のモチベーションは非常に高いと想像できます。 もちろん、就職先で発揮できるスキルを養成することだけが大学の役割ではありません。しかしながら、多くの学生がアカデミックな研究の道ではなくビジネスの世界に進む以上、このような大学も一定数存在してもよいように思います。 また、この修士コースで特筆すべきは、Practicum という実践的プロジェクトがカリキュラムに含まれていることです。このプログラムでは、2017年現在、110以上のスポンサーが156ものプロジェクトを提案しています。スポンサーは実際の企業における具体的な課題をデータとともに提供し、学生は4-5名のチームとなってこの課題に8ヶ月かけて取り組み、最終的なレポートをスポンサーの前でプレゼンテーションします。このような実践的なプロジェクトを通して、学生はデータ分析のスキルと課題解決の方法を学びます。 日本においても、筑波大学ではこのような実践的な産学連携講義の取り組みを開始しており、SAS Japanでも昨年より分析環境の提供による教育支援をしています。データサイエンティストの育成を目指す大学教職員の皆様、実践的データ活用の講義を始めてみませんか? SAS Japan がサポートいたします。

SAS Events | Students & Educators
SAS Global Forum 2018 Student Ambassadors の申込が締切間近です!

Student Ambassadors 先週、ワシントンDCで開催されたAnalytics Experience 2017には、筑波大学の学生3名が参加し、ポスター発表を行いました。学生による参加レポートは直近のブログ記事でも紹介しています。[レポート1] [レポート2] [レポート3] このように、SASでは、ビジネスやアカデミアのユーザーが一堂に会するグローバルイベントで、学生が自身の分析・研究・提案を発表する機会を提供しています。ビジネスやアナリティクスの専門家からのフィードバックを得ることで、自身のアイデアを深めると同時に、SASネットワークを広げることができます。特に、SASの最大のカンファレンスであるSAS Global Forumでは、SASソフトウェアを活用した研究発表を行う学生の中から「学生大使」 (Student Ambassadors) を任命し、他の参加者に紹介するとともに、SAS Global Forumに無料で招待しています(旅費や宿泊代もサポートされます!)。Student Ambassador Programの詳細については、こちらをご覧ください。 次回のSAS Global Forum 2018は米国コロラド州デンバーにて2018年4月8日から11日まで開催されます。今回は24名のStudent Ambassadors が選ばれる予定です。 応募方法: 投稿ページからSAS Global Forumにabstractを投稿し、submission numberを取得 応募ページからStudent Ambassadorsに応募 詳細はこちらをご覧ください。 締切は10月12日です。まずはabstractを投稿しましょう! 投稿・論文作成にあたり、SASの分析 環境や発表準備のご支援が必要な場合は、弊社でサポートいたします。Abstractを投稿された場合および、ご質問・ご要望などは下記のメールアドレスまでご連絡ください。 JPNAcademicTeam@sas.com 前回のAmbassadorの発表内容については、こちらから検索して参考にしてください。 なお、選ばれた一部の投稿は、Model Assisted Statistics and Applications (MASA): An International Journal Special Issue, IOS Press に論文を掲載することができます。トピックは、アナリティクス、ビジネス・インテリジェンスまたはビジネス・アナリティクスである必要があります。

Students & Educators
小林 泉 0
筑波大学学生によるAnalytics Experience 便り(3日目)

現地時間 2017/9/18,19,20 にてSASの秋のグローバルイベントである、「Analytics Experience 2017 (以下AX2017)」がアメリカ合衆国ワシントンDCで開催中です。最終日も、日本から参加している筑波大学理工学群社会工学類経営工学主専攻4年生の村井諒さん,小林大悟さん,白鳥友風さん3名による参加レポートを掲載します。   AX2017で印象に残ったセッションの紹介 by 筑波大学学生 AX2017の3日目が終わりました。今回は、この3日間で体験した様々なセッションの中で、私たち3人がそれぞれ印象に残ったセッションについてご紹介させていただきます。   1.Tools of the Trade: How and What to Pack in an Analytics Student’s Toolbelt(村井諒) 2.Keep the Bus Rolling : Improving Bus Stop assignment in Boston Public Schools(小林大悟) 3.How to Win Friends and Influence Executives: A Guide to Getting Your

SAS Events | Students & Educators
小林 泉 0
筑波大学学生によるAnalytics Experience 便り(2日目)

現地時間 2017/9/18,19,20 にてSASの秋のグローバルイベントである、「Analytics Experience 2017 (以下AX2017)」がアメリカ合衆国ワシントンDCで開催中です。前回に引き続き、今回は、日本から参加している筑波大学理工学群社会工学類経営工学主専攻4年生の村井諒さん,小林大悟さん,白鳥友風さん3名による参加レポート2日目を掲載します。 e-Poster部門@AX2017 発表への道のりby 筑波大学学生 昨日に引き続き、アナリティクスの最先端を行く発表が次々に行われていく中、私たちは今回の参加目的である二日目正午のStudent e-Poster部門の発表に臨みました。 イベントセッション情報:「Optimization of discounts at a retail store based on POS data keeping customer purchasing experience」 Student e-Posterは、学生がSASの製品を用いてアナリティクスの価値および可能性を提供する場です。学生たちは自身が作成したポスターを基に参加者にプレゼンテーションを行います。このセッションでは一方的な発表ではなく、ポスターを見に来たデータサイエンスに携わる教育関係者や企業関係者の方々と対話形式で発表の内容に関する意見を交換します。 今回のポスター発表は筑波大学理工学群社会工学類経営工学主専攻の目玉授業であるマネジメント実習で行った発表の内容を基に行ったものです。マネジメント実習では、学生がデータサイエンティストとして実データの分析から経営改善案の作成までを行う講義であり、ビジネスにおけるデータサイエンスの重要性を学ぶことができます。講義は10週にわたって行われ、プロのデータサイエンティストの方々からアドバイスを受けながら、アナリティクスを通じて改善案を練っていきます。これらの一連の取り組みは、同大学主催のビジネスデータ分析コンテストと平行して行われ、最終発表ではデータの提供企業の経営層の方を前に発表をし、その場で表彰が行われ、かつフィードバックを受けるという内容です。 参考:「SAS、大学におけるデータ・アナリティクス教育の質的向上のため、筑波大学に分析環境を提供」 私たちはSAS Enterprise Guideを用いて、小売店のPOSデータから価格と販売数量の関係を分析し、販売数に寄与しない値引きを明らかにすることで、コストを削減して経営改善を図る手法を提案しました。 今回のStudent e-Posterでは、先に上げたSAS Enterprise Guideや、より高度な分析を行うことができるSAS Enterprise Minerを使用してアナリティクスを行った他大学の学生によるポスターが多数展示され、データサイエンスに携わる方々に自分たちのポスターの内容を説明しました。聴講者の中には、ビジネスの第一線で活躍されている方も見受けられました。 このような環境でのポスター発表を通して、大学の実習講義では得ることの出来なかった、ビジネスに携わるデータサイエンティストとして重要な『最大限に利益を追求する姿勢』を学び取ることが出来ました。 発表中に企業の方から受けた質問の中には、「この手法をいかにして自分たちのビジネスに活かせるか」、「なぜ価値のない値引きだけに着目したのか」、「もっと利益を生み出すためにはまだできることがあると思うが、なぜそれをしなかったのか」といったものがありました。 これらの質問は、実習内では気づけなかった、利益を最大限に追求するビジネスの姿勢に基づいたものです。 事実私たちが提案した、無駄な値引きを明らかにすることによりコストを削減する手法は、経営改善を果たす上での一つの手段でしかありません。 私たちは無駄なコストの削減にのみ注目した価格最適化を行いましたが、価格の最適化は、無駄なコストの削減だけでなく、販売点数の増加や、時間とともに変化する顧客の性質なども踏まえて行うことができるはずです。 私たちは経営改善可能性として「無駄な値引きを減らす」という一つの案にたどり着いた結果、いかに無駄な値引きを無くすかということに固執していました。これは目標が、「経営改善」から「経営改善のための分析」にいつの間にか変わってしまい、分析すること自体に集中しすぎてしまったからです。特に私たちのようにビジネスの経験が少ない日本の学生はこのような方向に進んでしまう傾向があると思います。実際のビジネスにおいては、何が必要なのか、何ができるのかを常に意識し、そのうえでアナリティクスを活用することが重要だと考えられます。このことからビジネスにおいて、取りうる選択肢を柔軟に取捨選択し、最大の利益を求める姿勢を保ち続けることの大切さを実感しました。 このことを私たち学生が日本のデータサイエンス教育から学び取ることができれば、ビジネスに携わるデータサイエンティスト育成がさらに有意義なものになっていくだろうと感じました。 イベントも残り1日となりました。明日も様々なセッションを通し、学び取れることはすべて学び取るという心持で最終日に臨みたいです。

SAS Events | Students & Educators
小林 泉 0
筑波大学学生によるAnalytics Experience 便り(1日目)

現地時間 2017/9/18,19,20 にてSASの秋のグローバルイベントである、「Analytics Experience 2017 (以下AX2017)」がアメリカ合衆国ワシントンDCで開催中です。今回は、日本から参加している筑波大学理工学群社会工学類経営工学主専攻4年生の村井諒さん,小林大悟さん,白鳥友風さん3名による参加レポート1日目を掲載します。 Academic Summit@AX2017 レポート by 筑波大学学生 今回私たち3人が参加しているAX2017の1日目は、AM11:00にスタートしたGeneral Sessionをはじめ、様々な講演が行われました。 中でも最後時間帯である19:00から催されたAcademic Summitについてご紹介させていただきます。 Academic Summitは、AX2017に出席しているデータサイエンスに精通する学生が、学生間や企業の方々との交流を深めるイベントです。このサミットでは、SAS Executive Vice President およびSAS Chief Technology OfficerであるDr.Oliver Schabenberger氏の基調講演や、Gather IQという、クラウドソーシングによってあるトピックに関する問題の解決を図るアプリの説明、女性の技術職としてのキャリアを支援する制度、学生によるアナリティクスのコンテストであるShootout Competition における入賞チーム3組についての紹介がされ、最後に自由な交流の時間が設けられました。 Schabenberger氏は純粋数学を学んだのち、データサイエンスの道へと進むことになった経緯や、現在SAS社が注目しているAmbient AnalyticsとDeep Learningについての説明、さらに自分自身を成長させるための教訓などをお話ししてくださいました。 またGather IQは、SAS社のミッションの一つである社会貢献のためのアナリティクスの価値を非営利で提供するということを体現していたと感じました。 このイベントの最後には自由にコミュニケーションをとる時間が設けられ、参加者の皆様は積極的に情報交換を行っていました。何より印象に残ったのは、同年代で飛び級で大学院に進学した人や、SASR Enterprise Minerを使いこなしモデリングを行っていた人がいたこと、さらに、参加者全員が英語で円滑にコミュニケーションを行っていたことです。 同年代の海外の学生たちがデータサイエンスに対して抱いている思いや、それに臨んでいく姿勢、自身のキャリアに対する考えなどを聞くことで、自分たちがこれからどうやってこの分野で戦っていくべきなのか、そのために何をするべきかなど、改めて深く考えさせられました。 また、意見交換をした際、私たちは英語の能力が十分でなかったということ以前に、初対面の人に話しかけることを躊躇してしまい、インターナショナルな場で積極的にコミュニケーションをとることの難しさを痛感しました。このようなためらいを減らし、自分から積極的に意思疎通を図っていくことの大切さを感じました。 残る二日間、データサイエンスに関する知識やノウハウだけでなく、グローバル人材にとって必要な素養も学んでいけたらと思います。  

Data for Good | SAS Events | Students & Educators
小林 泉 0
SGF2017 レポート - 初日、オープニングセッション他

今年のSAS Global Forum は、USのフロリダ州オーランドで開催されました。 例年同様日曜日スタート 従来と異なるのは、パートナー様向けの、SAS Partner Forum 2017 がSGFと同時開催されたことです。日本から参加されたSASジャパンのパートナー企業様は、前日夜のレセプションから始まり、イベント週間の先頭をきって、日曜日朝8:30からのSAS Executiveも登壇するセッションに参加いただき、みっちり午後までのスケジュールを、忙しくこなして頂きました。その様子は、こちらのSAS Partner Blogよりビデオでご覧いただけます。お忙しい中を時間を割いて日本からご参加いただくパートナー企業様が年々、増加しており、今年もセッション他、有意義なコミュニケーションの時間を過ごさせていただきました。誠にありがとうございます。多種多様なスキル・経験をお持ちのパートナー企業皆様に囲まれ、今後のSASビジネスに非常に心強さを感じました。 明日のリーダーを育成する さて、SAS Global Forum、通称SGFは、初日の夜のOpening Sessionからスタートなのですが、その前に、前述のパートナー様向けのイベントだけでなく、毎年最も重要なイベントの一つであるAcademic Summitが行われます。これは、SASが重要視することの一つである、人材育成・教育への投資、そしてその結果、社会へ優秀なデータサイエンティストを生み出すための活動であるAcademic Programの年次の総会のようなものです。教育関係者だけではなく企業関係者も参加することで、実務で役立つ教育の促進と人材の確保というエコシステムを形成しています。これを特徴付ける数字としては、このイベントのスポンサーを見てもわかります。 通常のパートナー企業様のスポンサーが29社 アカデミックのスポンサーは、16教育機関。 この数から見ても、本イベントを大学などの教育機関が重要視していて、教育と企業との連携が盛んであることが伺えると思います。 SAS Global Forumそのものが、教育機関と民間企業の接点の場であり、学生の発表や表彰、そして参加大学の企業へのアピールの場にもなっています。さて、Academic Summitのアジェンダを見てみましょう。 ネットワーキング SAS担当エグゼクティブの挨拶 スカラシップ受賞者の紹介 Student Ambassador Program受賞者の紹介 Student Symposiumファイナリストの発表 ゲスト講演 Student Symposium(SGF2017で実施されるコンペティション)の優勝チームである、Kennesaw State University の "The Three Amigos"は、「銀行の定期預金契約者の決定要因をロジスティック回帰と決定木で分析」したものでした。その他Student Symposiumの発表は以下のようなものがありました。 Dataninjas: Modeling Life Insurance Risk (Kennesaw State University)