SAS Global Forum 2019レポート (1日目)

0

世界で二番目に大きいと言われる空港を有し、美しい新緑が広がるここテキサス州ダラスにて、SASの一大年次イベント、「SAS Global Forum 2019」が4/28~5/1に開催されています。数々の魅力的なセッションが催されており、各地からの参加者で今年も大盛況です。私は、同年代の学生たちがどのような活動をしているのか、また、後述するData for Good活動を推進するにはどうすればよいかを学ぶため、アカデミックセッションを中心に参加しました。本記事では一日目(4/28)のAcademic Sessionについてレポートします。

学生向けセッション

Student Sessionでは、世界各地から集まった学生の視野を広げること、将来の一つの指針を授けることを目的として様々なプレゼンテーションが行われました。

耳を澄ますと、英語・中国語・スペイン語など様々な言語が聞こえます。

データサイエンティストによるパネルディスカッション

最初に、経験豊かなデータサイエンティストたちをプレゼンターに迎え、「データサイエンティストになるには何を学べばよいか」「どのような人材が必要とされているか」などについてパネルデスカッションが行われました。データサイエンティストという概念は近年になって急激に広まったものであり、教育制度が追い付いていないという現状があります。データ分析の知識に加え、金融やビジネスなど、多岐にわたる応用的な知識にも精通していることが要求されており、それらを包括的に学ぶ方法や・何を専攻するかについての疑問を抱く学生は多いでしょう。それに対してプレセンターの一人は、「まずは統計学やプログラミング手法等の核となるデータ分析スキルを身に着けるべき」とアドバイスしていました。応用的な知識は本や授業で学ぶだけでは不十分で、社会での実践を通して学ぶ必要があります。そこで、まずはどこへでも応用可能な基礎力を身に着けてから、実践として各々の分野の専門知識を身に着けるべきとのことです。「自分が心から面白いと思う分野」に出会い、高い意欲と向上心を持って取り組める人材が求まれており、その分野が定まっていないうちは、最初にデータ分析の勉強をすべきと語っていました。

参加していた学生の多くは大学や大学院にてアナリティクスを専攻しているようでしたが、中には経営学を学ぶ中で副専攻として統計学を勉強している学生もおり、Global Forumならではの多様性を感じました。

Data for GoodとGather IQ

続いて、SAS USAI-Sah HsiehからData for Goodについてのプレゼンテーションです。I-Sah氏はハリケーンや地震などの災害時に、支援活動に関する意思決定をより効果的に進めるためのデータ分析プロジェクトを行った経験があり、それぞれの事例に関して紹介しました。それを通して、彼は「学校で学んだ知識を高々一セメスターだけにとどめているのはもったいない、積極的にアウトプットすべき」と強調し、その方法の一つとして、社会問題を解決するためにデータ分析であるData for Goodを紹介しました。彼は現在、国連の掲げる持続可能な開発目標(SDGs)に対してデータを用いたアプローチに取り組んでいます。貧困をなくすため・教育機会を増やすため、データを使ってできることは何でしょうか?その学びの一環として、一新されたSASData for Goodアプリ、Gather IQが紹介されました。SDGs17つの目標それぞれに対応して、問題の把握やデータの活用に役立つ様々な解説記事や分析結果が公開されています。各問題に対応するゲームや募金の仕掛けなどもあり、より多くの人にData for Goodのすそ野を広げるような仕様になっています。ぜひ一度お試しください。

講演後、個人的にI-Sah氏と直接ディスカッションをしました。Data for Goodの意義を再確認し、活動の進め方やデータ分析についてアドバイスをいただき、大変有意義な時間となりました。本ブログでもたびたびご紹介しておりますが、JapanでもData for Good 活動を推進する学生コミュニティがあり(第1回勉強会レポート)、様々な社会課題に対して主体的に分析を進めています。また、データ分析手法を学ぶ勉強会も開催予定です。ご興味のある方はこちらまでご連絡ください。JPNAcademicTeam@sas.com

Student Sessionの締めくくりとして、金融やヘルスケアに関するデータサイエンスの具体例が紹介されました。また、夜に行われたOpening Sessionにおいても機械学習やアナリティクスの実用例が紹介され、データサイエンスの無限の可能性を感じました。

Opening Sessionの会場はまるでライブ会場のよう

 

大学教員向けセッション

続いて、SAS Global Forum大学教員向けアカデミックセッションについてのレポートです。本セッションでは、データのプライバシーと倫理について、講演とテーブルごとにディスカッションを行いました。

テーマ(1) データサイエンスの隆盛と倫理

データサイエンスの拡大とともに、扱うデータの量と種類が増加してきました。それにより、少数の人間が大きな害悪を発生させることができるようになり、また、データ発生元の同意や認知を得ることが難しくなっています。さらに、データの発生時、取得時、操作時にバイアスが含まれてしまう可能性も大きく、このような状況のもとで、大学教育について以下の点でディスカッションを行いました。

  • 学部としての、または大学としての責任は何か?
  • 倫理についての講義は必要か?
  • 民間企業や官公庁とどのように協力すればよいか。

テーマ(2) 差分プライバシー

続いてのテーマです。データを「追加・削除」することにより分布や記述統計量が変化することで露見するプライバシーを差分プライバシー(Differential Privacy)と呼びます。これを匿名化する手法としては、人工的にノイズを追加する方法などがあります。差分プライバシーの問題に対して、以下の点でディスカッションを行いました。

  • 自身の研究のなかで差分プライバシーに有効なツールはあるか。
  • 非技術者に差分プライバシーを説明するにはどうすればよいか。
  • 研究における再現性が問題となっているが、データの公開ができない場合、「差分プライバシー的に統計的特性が類似したデータ」を公開することに賛成か、反対か?

テーマ(3) 倫理の教育について 

最後に倫理の教育に関して以下の点で議論を行いました。

  • 倫理について、現在は何が教えられているか?
  • 誰が教えるべきか?
  • 何を教えるべきか?
  • 教えるべきことは、学部や学生のレベルによって異なるか?

二日目以降の様子についても本ブログにてご紹介します。ぜひご覧ください。

Share

About Author


Academic Support Staff

東京大学前期教養学部理科一類 2年

Leave A Reply

Back to Top