Tag: Python

Analytics
自然言語処理とSAS (3)

こんにちは!SAS Institute Japanの堀内です。今回も自然言語処理について紹介いたします。 前回の投稿では、実際にSASを使って日本語の文章を扱う自然言語処理の例を解説しました。 最終回の本投稿ではその応用編として、自然言語処理の代表的なタスクとSASによる実装方法を紹介します。なお、ここでいうタスクとは「定式化され一般に共有された課題」といった意味になります。自然言語処理には複数のタスクがあり、タスクごとに、共通する部分はあるとはいえ、問題解決のアプローチ方法は基本的に大きく異なります。SASには各タスクごとに専用のアクションセット1が容易されています。 要約タスク その名の通り文章を要約するタスクです。SASではtextSummarizeアクションセットで対応可能です。 ここでは、NHKのニュース解説記事「気になる頭痛・めまい 天気が影響?対処法は?」(https://www.nhk.or.jp/kaisetsu-blog/700/471220.html) の本文を5センテンスで要約してみましょう。 import swat conn = swat.CAS('mycashost.com', 5570, 'username', 'password') conn.builtins.loadActionSet(actionSet='textSummarization') conn.textSummarization.textSummarize(addEllipses=False, corpusSummaries=dict(name='corpusSummaries', compress=False, replace=True), documentSummaries=dict(name='documentSummaries', compress=False, replace=True), id='Id', numberOfSentences=5, table={'name':CFG.in_cas_table_name}, text='text', useTerms=True, language='JAPANESE') conn.table.fetch(table={'name': 'corpusSummaries'}) numberOfSentencesで要約文のセンテンス数を指定しています。結果は以下の通りです。 'まず体調の変化や天気、気温・湿度・気圧などの日記をつけ、本当に天気が影響しているのか、どういうときに不調になるのかパターンを把握すると役立ちます。 気温・湿度以外にも、気圧が、体調の悪化や、ときに病気の引き金になることもあります。 私たちの体は、いつも耳の奥にある内耳にあると言われている気圧センサーで、気圧の変化を調整しています。 ただ、天気の体への影響を研究している愛知医科大学佐藤客員教授にお話ししを伺ったところ、「台風最接近の前、つまり、気圧が大きく低下する前に、頭が痛いなど体調が悪くなる人は多い」ということです。 内耳が敏感な人は、わずかな気圧の変化で過剰に反応し、脳にその情報を伝えるので、脳がストレスを感じ、体のバランスを整える自律神経が乱れ、血管が収縮したり、筋肉が緊張するなどして、その結果、頭痛・めまいなどの体に様々な不調につながっているのです。' 重要なセンテンスが抽出されていることが分かります。   テキスト分類タスク 文章をいくつかのカテゴリに分類するタスクです。その内、文章の印象がポジティブなのかネガティブなのか分類するものをセンチメント分析と呼びます。ここでは日本語の有価証券報告書の文章をポジティブかネガティブか判定してみます。使用するデータセットは以下になります。 https://github.com/chakki-works/chABSA-dataset (なお、こちらのデータセットには文章ごとにポジティブかネガティブかを示す教師ラベルは元々付与されておりませんが、文章内の特定のフレーズごとに付与されているスコアを合算することで教師ラベルを合成しております。その結果、ポジティブ文章は1670文章、ネガティブ文章は1143文章、合計2813文章になりました。教師ラベルの合成方法詳細はこちらのブログをご覧ください。) pandasデータフレームにデータを格納した状態を確認してみましょう。 df = pd.read_csv(CFG.local_input_file_path) display(df)

Analytics
自然言語処理とSAS (2)

こんにちは!SAS Institute Japanの堀内です。今回も自然言語処理について紹介いたします。 第1回目の投稿では、最近の自然言語処理の応用例とSAS社が携わった自然言語処理関連の実案件の概要を紹介しました。 第2回目の本投稿では実際にSASを使って日本語の文章を扱う自然言語処理の例を解説していきます。 テキストデータって何? 自然言語処理を語る前に、自然言語処理が処理対象とするデータのことを知る必要があります。自然言語処理で扱われるデータはテキストデータと呼ばれています。ここからはテキストデータがどういうものか探っていきます。 テキストとは以下のようなものです。 「自然言語処理で扱われるデータはテキストデータと呼ばれています。本投稿ではテキストデータがどういうものか探っていきます。」 何の変哲もない日本語の文章です。日本語以外の言語で書かれた文章ももちろんテキストと呼ばれます。 ではテキストデータとは何でしょう?データと言うからには何らかの構造を持っていると考えます。例えば行と列が与えられたテーブルデータがわかりやすい例です。 テキストデータと呼ぶとき、テキストに何らかの構造を与えられたものを想起すると良いかと思います。上で挙げたサンプルのテキストをテキストデータに変換してみましょう。 ["自然言語処理で扱われるデータはテキストデータと呼ばれています。",  "本投稿ではテキストデータがどういうものか探っていきます。"] これは句読点でテキストを区切り、リストに格納した例です。やりかたは他にもあります、 [["自然言語処理",  "で", "扱われる", "データ", "は", "テキストデータ", "と", "呼ばれて", "います", "。"],  ["本投稿", "では", "テキストデータ", "が", "どういうもの", "か", "探って", "いきます", "。"]] これは先ほどの例で2つのテキストに区切ったうえで、それぞれのテキストを更に単語ごとに区切って別々のリストに格納した例になります。これをテーブルデータのように整えると、 ID COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 1 自然言語処理 で 扱われる

Machine Learning
Afshin Oroojlooy 0
Application of reinforcement learning to control traffic signals

In this article, we summarize our SAS research paper on the application of reinforcement learning to monitor traffic control signals which was recently accepted to the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada. This annual conference is hosted by the Neural Information Processing Systems Foundation, a non-profit corporation that promotes the exchange of ideas in neural information processing systems across multiple disciplines.

Advanced Analytics
Susan Kahler 0
Video: Image embedding using deep learning with Python (DLPy) and SAS Viya

An embedding model is a way to reduce the dimensionality of input data, such as images. Consider this to be a type of data preparation applied to image analysis. When an embedding model is used, input images are converted into low-dimensional vectors that can be more easily used by other computer vision tasks. The key to good embedding is to train the model so that similar images are converted to similar vectors.

Advanced Analytics | Data Visualization | Programming Tips
Xavier Bizoux 0
Continuous Integration/Continuous Delivery – Using Python and REST APIs for SAS Visual Analytics reports

With increasing interest in Continuous Integration/Continuous Delivery (CI/CD), many SAS Users want to know what can be done for Visual Analytics reports. In this article, I will explain how to use Python and SAS Viya REST APIs to extract a report from a SAS Viya environment and import it into another environment.