Tag: optimization

Rick Wicklin 0
Ten tips before you run an optimization

Optimization is a primary tool of computational statistics. SAS/IML software provides a suite of nonlinear optimizers that makes it easy to find an optimum for a user-defined objective function. You can perform unconstrained optimization, or define linear or nonlinear constraints for constrained optimization. Over the years I have seen many

Artificial Intelligence | Programming Tips
小林 泉 0
機械はあなたの娯楽までをも奪うのか?

さて、今回ご紹介する例は、最近議論が活発な、「機械(コンピューター)が人間の作業を奪う(?)」お話です。 機械は人間から仕事(今回の例では、仕事ではなく娯楽と言ったほうが近いかもしれません)を奪ったことになるのでしょうか?それとも、真の楽しみを味わえるように、単に単純労働から開放してくれただけなのでしょうか? 昨今、人工知能がもたらす変化という文脈で行われている議論ですが、今回は、昔からある最適化アルゴリズムで、人間の仕事を奪います。皆さんでその意味を考えてみてください。 イギリスの諜報機関GCHQがクリスマスメッセージとして送った難解なパズルが公開されており、優秀な人たちを楽しませています。その第一問が、以下の「お絵かきロジック」です。日本でも一時期流行しました。イラストロジックなどとも言われ、私自身もトライした記憶があります。   このパズルそのものについては、他の情報源に頼って欲しいのですが、簡単に説明すると、それぞれのセルを黒か白で塗りつぶすパズルで、行と列に書かれている数字は、黒マスが連続している数を順番どおりに示している「手がかり」です。いくつかのセルはすでに黒く塗りつぶされていますが、それらはこのパズルの答えを一つに確定するために必要です。 一部の箇所は、それぞれの行や列の情報だけを見て解くことが可能です。例えば、7番目の行を見てみましょう。手がかりは、(7 1 1 1 1 1 7)です。すなわち、全部で 7 + 1 + 1 + 1 + 1 + 1 + 7 = 19 個の黒いセルが必要となり、最低ひとマスは間隔が空いていないといけないので、7個の固まりの間の個数を考慮すると、7-1=6 個の白マスが必要となります。この二つの数字を足すと、19 + 6 = 25 となり一行の列数とおなじ数にちょうどなります。したがって、この結果から直ちにこの行の全てがあきらかになります。 黒7, 白1, 黒1, 白1, ・・・ ついてきていますよね。 しかし、そうは簡単にいかない箇所のほうが多いでしょう。その場合には、手がかりから部分的にしか黒く塗りつぶせないことになります。例えば、一行目を見てください。ヒントから(7 + 3 + 1 + 1 + 7) + (5

Advanced Analytics
Emily Lada 0
Simulate to validate

The primary objective of many discrete-event simulation projects is system investigation.  Output data from the simulation model are used to better understand the operation of the system (whether that system is real or theoretical), as well as to conduct various "what-if"-type analyses.   However, I recently worked on another model

Advanced Analytics
Matthew Galati 0
The kidney exchange problem

Suppose someone needs a kidney transplant and a family member is willing to donate one. If the donor and recipient are incompatible (because of blood types, tissue mismatch, and so on), the transplant cannot happen. Now suppose two donor-recipient pairs A and B are in this situation, but donor A

Rick Wicklin 0
How to find an initial guess for an optimization

Nonlinear optimization routines enable you to find the values of variables that optimize an objective function of those variables. When you use a numerical optimization routine, you need to provide an initial guess, often called a "starting point" for the algorithm. Optimization routines iteratively improve the initial guess in an

Data Management
Alyssa Farrell 0
A must-read for petroleum professionals

Oil companies are being forced to explore in geologically complex and remote areas to exploit more unconventional hydrocarbon deposits.  New engineering technology has pushed the envelope of previous upstream experience.  No guidebook existed on how computing methodologies can contribute to E&P performance at reduced risk.  Until now. A new book

Rick Wicklin 0
Optimizing a function of an integral

Last week I showed how to find parameters that maximize the integral of a certain probability density function (PDF). Because the function was a PDF, I could evaluate the integral by calling the CDF function in SAS. (Recall that the cumulative distribution function (CDF) is the integral of a PDF.)

Rick Wicklin 0
Optimizing a function that evaluates an integral

SAS programmers use the SAS/IML language for many different tasks. One important task is computing an integral. Another is optimizing functions, such as maximizing a likelihood function to find parameters that best fit a set of data. Last week I saw an interesting problem that combines these two important tasks.

Mike Gilliland 0
Forecasting and analytics at Disney World

The April 2012 issue of ORMS Today contains a piece on "How analytics enhance the guest experience at Walt Disney World," by Pete Buczkowski and Hai Chu. While many of us are used to forecasting just one or two things (such as unit sales or revenue), Pete and Hai illustrate

Rick Wicklin 0
Optimizing? Two hints for specifying derivatives

I previously wrote about using SAS/IML for nonlinear optimization, and demonstrated optimization by maximizing a likelihood function. Many well-known optimization algorithms require derivative information during the optimization, including the conjugate gradient method (implemented in the NLPCG subroutine) and the Newton-Raphson method (implemented in the NLPNRA method). You should specify analytic

Rick Wicklin 0
Maximum likelihood estimation in SAS/IML

A popular use of SAS/IML software is to optimize functions of several variables. One statistical application of optimization is estimating parameters that optimize the maximum likelihood function. This post gives a simple example for maximum likelihood estimation (MLE): fitting a parametric density estimate to data. Which density curve fits the