Tag: cloud

Advanced Analytics | Artificial Intelligence | Cloud
Santiago Fainstein 0
Analítica, nube e inteligencia artificial, tres de las tecnologías en las que más invertirán las empresas en el 2022

La acelerada digitalización de los servicios y el cambio definitivo en el comportamiento de los clientes son algunas de las razones que llevarán a las empresas a aumentar sus inversiones en tecnología en el 2022. Aunque la tecnología no lo es todo en los procesos de transformación digital, sí es

Advanced Analytics | Analytics | Cloud | Customer Intelligence | Data Management
Ricardo Salama 0
A mentalidade da jornada digital

Vivemos tempos de mudanças rápidas e intensas. As inovações tecnológicas cada vez mais impactam as vidas das pessoas e das organizações, que precisam instantaneamente acompanhar o acelerado passo da digitalização. Observamos isso como nunca antes no ano de 2020. Espelho disso foi a evolução da computação em nuvem, tecnologia que

Artificial Intelligence | Machine Learning
Ivan Fernando Herrera 0
7 preguntas (y respuestas) clave para entender la Inteligencia Artificial

La Inteligencia Artificial es actualmente uno de los términos más mencionados en el mundo (la búsqueda de IA (iniciales de Inteligencia Artificial) en solo Google arroja más de mil millones de resultados). No debiera ser diferente: estamos en plena era de la cuarta revolución industrial y quien aspire por lo

Analytics
Jihye Yoo 0
2021년 주목해야 할 데이터 분석 8대 키워드

지난해는 전례없는 코로나19 대유행으로 전 세계의 각국 정부 및 기업은 코로나19로 인한 위기를 극복하고자 디지털 트랜스포메이션을 통한 혁신을 가속화한 한 해였습니다. 불확실성 속에 찾아온 2021년, SAS의 여러 전문가들은 2021년 데이터 분석 트렌드를 인공지능(AI), 클라우드, 백신 등의 키워드를 통해 전망했습니다. 2021년 주목해야 할 데이터 분석 8가지 트렌드를 소개합니다. 기업의 임원들이 AI를

Analytics
Jihye Yoo 0
SAS, Boemska 인수 및 새로운 CTO 임명

SAS가 클라우드 시장 및 타사 애플리케이션 등에 AI 접목을 촉진하기 위해 로우코드/노코드 애플리케이션 배포 및 분석 워크로드 관리 전문 영국 비상장 회사 보엠스카(Boemska)사를 인수했습니다. SAS는 이번 인수로 획득한 기술을 SAS Viya에 적용해 고객의 클라우드 분석 관련 비용을 절감하고, 모델을 모바일 및 엔터프라이즈 앱 등에 이식할 수 있게 될 예정입니다. 이를

Data Management | Programming Tips
SASからMicrosoft AzureのBlobストレージ内データにアクセスする方法(第2回)

前回のブログでは、Microsoft AzureストレージサービスのブロックBlobストレージについて軽く紹介し、SASからBlobストレージ中の特定の一つのファイルにアクセスする方法を紹介しました。 第1回リンク:https://blogs.sas.com/content/sasjapan/2020/10/01/sas-azure-blob-1/ しかし、実際のビジネスシーンでは、特定の一つのファイルにだけアクセスする運用はやはり割合的には少ないと考えています。 そこで、今回のブログでは、より効率的に、複数データに同時にアクセスできる方法を紹介します。そしてこれは、Microsoft AzureのBlobストレージをファイルシステムとしてSASサーバにマウントし、SASサーバから便利にアクセスする方法です。 前回と同じように、下記の方法を使うためには、前提条件として、SAS ViyaサーバとBlobストレージがあるAzure間でネットワーク通信ができる必要がありますので、ネットワークセキュリティ条件を確認してから、下記の方法をお試しください。 方法②: BlobストレージをファイルシステムとしてSASサーバにマウントし、SASサーバからアクセスする方法。 Microsoft Azure側: 1.まず、Azureポータルに入り、「ストレージアカウント」をクリックします。(図2-1) 図2-1 2.その配下で、使用されている対象Blob用のストレージアカウントをクリックします。(図2-2) 図2-2 3.そして、表示された左ペインの中で、「アクセスキー」というメニューをクリックします。(図2-3) 図2-3 4.該当ページでは、このストレージアカウントにアクセスするためのキーの情報が含まれているので、その中の、「ストレージアカウント名」と「キー」をメモしてください。あとで接続設定情報を作る時に使用します。(図2-4) 図2-4 5.一層上に戻り、同じくストレージアカウントの左ペインで、Blobサービスの中の「コンテナー」をクリックします。(図2-5)アクセス先のコンテナー名前(例:folderfirst)をメモしてください。あとで接続設定情報を作る時に使用します。 図2-5 以上で、Azure側の準備作業が終わります。次は、SASサーバ側の準備作業を進めていきます。   SAS Viyaサーバ側: 今回、Blobストレージをファイルシステムとしてマウントするには、Blobfuseという仮想ファイルシステムドライバー機能を使います。そのため、事前にSAS ViyaがインストールされているLinuxサーバ側に、そのツールをインストールする必要があります。 このブログで使用しているSAS ViyaサーバはRHEL/CentOS 7.x系のLinuxサーバであるため、Blobfuseのインストールを含めた手順は下記となります。 6.使用するSASユーザで、SASサーバ側にMicrosoftパッケージリポジトリをインストールします。 sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/packages-microsoft-prod.rpm 7.BlobfuseをSASサーバ側にインストールします。 sudo yum install blobfuse 8.Azureでは、低いレイテンシーとパフォーマンスのため、SSDが提供され、今回はそれを使って、ディレクトリーを作成します。(SSD使わないことも可能ですので、その場合、別ディレクトリーで作成して頂いてかまいません。) sudo mkdir /mnt/resource/blobfusetmp -p sudo chown #YourUserName#:sas /mnt/resource/blobfusetmp

Data Management | Programming Tips
SASからMicrosoft AzureのBlobストレージ内データにアクセスする方法(第1回)

近年、クラウドベンダーが提供するサービスが充実し、より多くのクラウドサービスが誕生してきました。しかし、一つのニーズに対して、複数のサービスを選択できるようになってきているものの、どのサービスが最適なのかを判断することは逆に難しくなってきていると考えられます。最近、SASを活用しているお客様から、「Microsoft社のAzureを使っていますが、これからクラウドにデータを移行して、安くて使い勝手なストレージサービスは何かありませんか」と聞かれたこともありました。 このブログシリーズでは、クラウド上のストレージサービスの一種であるMicrosoft Azure CloudのBlobストレージサービスの概要を紹介した上で、SAS ViyaからそのBlock Blobストレージに格納されているデータへアクセスする方法をご紹介させていただきます。 このブログシリーズは合計2回です。今回のブログでは、まず特定の一つファイルへのアクセス方法をご紹介します。次回のブログでは、より汎用的なアクセス方法、つまり、Blobストレージを一つのファイルシステムとして、SASサーバと連携し、一度に複数のデータにアクセスする方法をご紹介します。ぜひ最後まで、お付き合いいただければと思います。 第1回:https://blogs.sas.com/content/sasjapan/2020/10/01/sas-azure-blob-1/  第2回:https://blogs.sas.com/content/sasjapan/2020/10/05/sas-azure-blob-2/ Blobストレージとは何か? まず、Blobストレージとは何かを紹介する前に、Blobって何でしょうか、から始めます。聞きなれない方もいらっしゃるかと思いますので。実際、BlobはBinary Large OBjectの略称です。本来はデータベースで用いられているデータタイプの種類で、メディアファイルや、圧縮ファイル、実行ファイルなどのデータを格納する時に使用されているものです。 では、Blobストレージとは何か?Microsoft社の紹介では、こう書かれています。 「Blob Storage は、テキスト・データやバイナリ・データなどの大量の非構造化データを格納するために最適化されています。非構造化データとは、特定のデータ・モデルや定義に従っていないデータであり、テキスト・データやバイナリ・データなどがあります。」 少し言い換えますと、Blobストレージは、ログファイルから、画像ファイルやビデオ・オーディオファイルまで格納できます。もちろん、通常目的でのデータ利用にも対応しているため、データの格納場所として使っても問題ありません。(Microsoft Azureの資料によりますと、4.75 TiBまで可能です。) なぜBlobストレージなのか 前文で少し申し上げたSASのお客様から頂いた質問の中で、「安くて使い勝手の良いストレージサービスは」と聞かれた事に関して、安いというポイントに関しては、下記の図をご覧ください。 ソース:https://azure.microsoft.com/ja-jp/pricing/details/storage/(2020/09/09アクセス時点) ご覧のように、ブロックBlobのストレージサービスは、安価で、かつ非構造化データに対応し、一般目的でのデータストレージとして、非常に向いています。 もちろん、ビジネスケースによっては、様々考慮すべき点(既存環境にHadoop環境があるかどうか、スループット、ビッグデータ等々)もありますが、今回は、主にこのブロックBlobストレージを例として紹介します。 SAS ViyaからBlobストレージにアクセスする方法 ここからは、SAS ViyaからBlobストレージにアクセスする方法をご紹介します。下記の方法を使うために、前提条件として、SAS ViyaサーバとBlobストレージがあるAzure間でネットワーク通信ができる必要がありますので、ネットワークセキュリティ条件を確認してから、下記の方法をお試しください。 方法①: SASのPROC HTTPプロシージャを使って、Blobストレージ内の特定の一つのデータにアクセスする方法。 Microsoft Azure側: 1.まず、Azureポータルに入り、「すべてのリソース」をクリックします。(図1-1) 図1-1 2.その配下で、利用されているストレージアカウントをクリックします。(図1-2) 図1-2 3.次に、表示された左側のメニューの中で、「Blob Service」配下のコンテナーをクリックします。(図1-3) 図1-3 *豆知識: ここで、いきなりコンテナーが出てくることに関して、混乱している方もいらっしゃるかもしれないので、少し解説します。こちらのコンテナーとは、Dockerコンテナーの意味ではありません。Blobストレージサービス配下のデータ格納用のサブ階層のことであり、フォルダーのようなものとイメージしてください。(図1-4) 図1-4 4.上記図1-3のように、その中に一つ「folderfirst」というコンテナーが存在しており、それをクリックすると、中に保管されているデータが見えるようになります。(図1-5) 図1-5 5.ここからが重要なポイントです。特定のデータ、例えば、「sas7bdat」データにSAS Viyaからアクセスしたい場合は、該当ファイルの名前をクリックして、下記のようなプロパティ情報を表示させます。(図1-6) 図1-6

Advanced Analytics | Analytics | Data Management
Gustavo Guerrero 0
Operar desde la nube: más poder y agilidad

¿Por qué es hoy el mejor momento para migrar a la nube? Porque su conveniencia, ubicuidad y flexibilidad permiten que una organización siga operando sin interrupción en situaciones normales y extraordinarias, ya sea una crisis económica, política, natural o sanitaria como la actual. Pero también porque la nube ha alcanzado

Analytics
Mark Lambrecht 0
The future of health care and life sciences with SAS Analytics on Azure 

Heather Cartwright, General Manager of Microsoft Health, joined me to contemplate the new horizons in healthcare made possible by SAS and Microsoft’s new strategic partnership.  The four walls of the doctor’s office are disappearing. Following decades of planning for hypotheticals, this year health care organizations were compelled to make good on the promise of digital transformation. Meeting the

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning | SAS Administrators
Keith Renison 0
Coming soon: Your SAS software, continuously updated

If you're my kids, the term, “continuous integration,” might have you thinking about how much time you’ve spent lately with the family, and “continuous delivery” is what's been happening on the front porch the past few weeks. But to a software developer, these terms mean something entirely different. Combined and

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning | SAS Events
Jihye Yoo 0
신속한 의사결정을 지원하는 '클라우드 네이티브' 애널리틱스

오늘 6월 17일(미 동부 시간 기준 16일) 온라인으로 개최한 ‘SAS 글로벌 포럼 2020’에서 SAS는 최신 클라우드 기술을 접목해 의사결정 과정을 가속화하는 AI 기반 엔터프라이즈 분석 플랫폼의 최신 버전 ‘SAS 바이야 4(SAS® Viya® 4)’를 공개하고 마이크로소프트와 클라우드 전환 가속화를 위한 전략적 파트너십 체결을 발표했습니다. 클라우드로 전환하는 비즈니스 IT 트렌드에 발 맞추어

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning | SAS Administrators
Keith Renison 0
Are you ready for true cloud native computing? Meet SAS Viya 4

It’s official: NASA no longer builds spaceships. They’ve outsourced that task. According to NASA administrator Jim Bridenstine, "We're going with commercial partners. NASA is not purchasing, owning and operating the hardware. We're buying the service." Why? Because NASA needs to focus on exploring space, not building the transportation to get

Analytics | Artificial Intelligence | SAS Events
0
SAS, Microsoft bring analytics to everyone, everywhere

Digital transformation continues to change our relationship with technology. As part of this change, the world is transforming from one of technology-literate people to one of people-literate technology. What do we mean by people-literate technology? We mean smart, automated, reliable, explainable decision systems that operate at scale. Analytics and AI

Analytics | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第4回「オペレーショナル・アナリティクス for IT」

前回は、ビジネス価値創出につながる「オペレーショナル・アナリティクス for Data Scientist」ユースケースの論文を紹介しました。今回は、企業様にとって、クラウド上のインフラアーキテクチャと分析プラットフォームのデプロイメントについて、ご紹介します。昨今、なぜ「コンテナ」が注目されているのか、そして、クラウドやコンテナ上に分析プラットフォームを移行/構築し、活用することに関心があるのであれば、ぜひ最後までご覧ください。 1.Cows or Chickens: How You Can Make Your Models into Containers モデルは特定の作業(新しいデータをスコアリングして予測を出すこと)として役割を果たしてきています。一方、コンテナは簡単に作成し、廃棄し、再利用できることができます。実際、それらは簡単にインテグレートさせ、パブリッククラウドとオンプレミス環境で実行できます。SASユーザは本論文を通じて、簡単にモデルの機能をコンテナに入れることができます。例えば、パブリッククラウドとオンプレミス環境でのDockerコンテナ。また、SASのModel Managerは様々なソース(オープンソース、SAS、コンテナ等々)からモデルの管理を行うことができます。したがって、この論文はそれらの基本知識と、どのようにSASの分析モデルをコンテナに入れることをメインに紹介します。 2.Orchestration of SAS® Data Integration Processes on AWS この論文では、Amazon Web Services(AWS)S3でのSASデータインテグレーションプロセスの構成について説明します。例としては、現在サポートしているお客様がクレジット報告書を生成するプロセスを毎日実行しています。そして、そのお客様の対象顧客は1カ月ごとに1回その報告を受け取ります。データ量としては、毎日に約20万の顧客情報が処理され、最終的に毎月約600万人の顧客へ報告することとなります。プロセスはオンプレミスデータセンターで始まり、続いてAWSのSASデータインテグレーションでAPR計算が行われ、最後にオンプレミスデータセンターで報告書が生成されます。さらに詳しい情報としては、彼らのアーキテクチャ全体はマイクロサービスを使われていますが、同時にAWS Lambda、簡易通知サービス(SNS)、Amazon Simple Storage Service(Amazon S3)、およびAmazon Elastic Compute Cloud(EC2)などの独立した高度に分離されたコンポーネントも使われています。つまり、それらにより、データパイプラインに対するトラブルシューティングが簡単になっていますが、オーケストレーションにLambda関数を使用することを選択すると、プロセスがある程度複雑になります。ただし、エンタープライズアーキテクチャにとって最も安定性、セキュリティ、柔軟性、および信頼性もあります。S3FやCloudWatch SSMのようなより単純な代替手段がありますが、それらはエンタープライズアーキテクチャにはあまり適していません。 3.SAS® on Kubernetes: Container Orchestration of Analytic Work Loads 現在、Big Dataの時代で、Advanced analyticsのためのインフラストラクチャに対するニーズが高まっています。また、分析自体に対して、最適化、予測が最も重要領域であり、小売業、金融業などの業界ではそれぞれ、分析に対する独自の課題を抱えています。この論文では、Google Cloud