As you begin managing your SAS code and projects in Git, here are a few guidelines for how to organize your work and collaborate with others.
Tag: best practices
SAS' Véronique Van Vlasselaer reveals why managing model performance is as important as putting them into production.
Through hyperparameter autotuning, you can maximize a model's performance without maximizing effort. While SAS searches the hyperparameter space in the background, you are free to pursue other work.
Family-owned and operated for more than 35 years, Twiddy & Company prides itself on exceptional real estate services to homeowners and vacationers in northeast North Carolina and the Outer Banks. Whether a customer is thinking of putting their house up for rent or planning their next vacation, Twiddy makes the
A previous post, Spatial econometric modeling using PROC SPATIALREG, introduced the SAS/ETS® SPATIALREG procedure and demonstrated its usage to fit both linear and SAR models by using 2013 county-level home value data in North Carolina. In most analysis for spatial econometrics, you rarely know the true model from which your data
When shopping for a new TV, with many sets next to each other across a store wall, it is easy to compare the picture quality and brightness. What is not immediately evident and expected is the difference between how the set looked in the store and how it looks in your
Optimization for machine learning is essential to ensure that data mining models can learn from training data in order to generalize to future test data. Data mining models can have millions of parameters that depend on the training data and, in general, have no analytic definition. In such cases, effective models
When you go to the grocery store, you see that items of a similar nature are displayed nearby to each other. When you organize the clothes in your closet, you put similar items together (e.g. shirts in one section, pants in another). Every personal organizing tip on the web to
"I've seen the future of data science, and it is filled with estrogen!" This was the opening remark at a recent talk I heard. If only I'd seen that vision of the future when I was in college. You see, I’ve always loved math (and still do). My first calculus
I recently read the book "Die Zahl die aus der Kälte kam" (which would be The Number That Came in from the Cold in English) written by the Austrian mathematician Rudolf Taschner. He is ingenious at presenting complex mathematical relationships to a broader audience. One of his examples deals with
It is said that everything is big in Texas, and that includes big data. During my recent trip to Austin I had the privilege of being a judge in the final round of the Texata Big Data World Championship, a fantastic example of big data competitions. It felt fitting that
Macroeconometrics is not dead: (and I wish I had paid better attention in my time series course): I wrote this on the way to see one of our manufacturing clients in Austin, Texas, anticipating a discussion how to use vector autoregressive models in process control. It is a typical use
If you turned in for my recent webinar, Machine Learning: Principles and Practice, you may have heard me talking about some of my favorite machine learning resources, including recent white papers and some classic studies. As I mentioned in the webinar, machine learning is not new. SAS has been pursuing
When you work with big data, you often deal with both a large number of observations and a large number of features. When the number of features is large, they can be highly correlated, resulting in significant amount of redundancy in the data. Principal component analysis can be a very
My last post, Pitching analytics: recommendations on how to sell your story, discussed the steps I consider when winding up for an analytics pitch. In part 2 of this series I share the tips and tricks I have acquired for throwing strikes for during your analytics pitch. Like everyone, sometimes
Gartner has stated that there are nearly five billion connected devices throughout the world today and predicts that there will be more than 25 billion by 2020, making the potential of this technology unlimited. The connected devices in industrial settings, in personal devices, and in our homes are creating a
I’ve often heard people say about weather forecasters “they have the best job…they just report what the models are telling them, and when they’re wrong they can always blame it on Mother Nature throwing us a curve.” While that’s true, this glass-half-empty crowd is failing to appreciate how amazing the
I routinely speak with executives who tell me that the ability to “sell” analytical results is just as important as producing them. In this post I will share some of what I have learned in several years of presenting complicated analytical results to audiences, both technical and lay. Some of
The need for fast and easy access to high-powered analytics has never been greater than it is today. Fortunately, cloud processing still holds the promise of making analytics more transparent and ubiquitous than ever before. Yet, a significant number of challenges still exist that prevent more widespread adoption of cloud
Even though the first papers in machine learning were in the 1950s, one could argue it goes back further to the work of Alan Turing and other early computer scientists. So why has this way of modeling seemingly become so popular now? Because data has become a commodity. Large amounts of many different
I have been working on streaming analytics in conjunction with a project at Duke Energy, so a few months ago I was contacted by a colleague who wanted to look at the feasibility of applying what I’ve learned to our Internet of Things (IoT) initiative. In particular, we wanted to see if
SAS is hosting this year’s European Analytics 2015 conference in Rome November 9 – 11. This three-day inspiring event will give you the chance to boost your company’s analytics culture in an international environment to make sure your knowledge and expertise meet the demands of the digital era. But what if
Right now I’m crossing the Pacific toward Australia and New Zealand for the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (a.k.a. KDD), a Data Science Melbourne MeetUp, and the SAS Users of New Zealand conference. New Zealand is the birthplace of open source R. So this trip
How do we hire data scientists at SAS, since we are not unique in our search for a rare talent type that continues to be in high demand? This post is the last in a series on finding data scientists, based on best practices at SAS and illustrated with some
There is a job category unfamiliar to most people that plays a crucial role in the creation of analytics software. Most can surmise that SAS hires software developers with backgrounds in statistics, econometrics, forecasting or operations research to create our analytical software; however, most do not realize there is another
The date of Easter influences our leisure activities Different from many other public holidays, Easter is a so-called movable holiday. This means that the Easter bunny brings more than just eggs for the statistician - he brings special Easter forecasting challenges. In the year 325 CE the Council for Nicea
Because finding analytical talent continues to be a challenge for most, here I offer tips 5, 6, and 7 of my ten tips for finding data scientists, based on best practices at SAS and illustrated with some of our own “unicorns.” You can read my first blog post for why they
You’ve heard about the smart grid, but what is it that makes the grid smart? I’ve been working on a project with Duke Energy and NC State University doing time-series analysis on data from Phasor Measurement Units (PMUs) that illustrates the intelligence in the grid as well as an interesting
Finding people with the range of skills classified as data science can be a challenge, which is why some call them unicorns (do they really exist?), so I recently posted ten tips on finding unicorns. In my first post I elaborated on tips 1 and 2 (1. hire from an
As this article on the mythical data scientist describes, many people call this special kind of analytical talent "unicorns," because the breed can be so hard to find. In order to close the analytical talent gap that McKinsey Global Institute and others have predicted, and many of you experience today, SAS launched