앞선 두번의 연재를 통해 자금세탁 방지 기술이 향후 어떤 방식으로 발전되어갈 것인지, 금융기관이 현재 운영중인 자금세탁 환경을 앞으로 어떻게 변화시켜 나가야 하는지를 살펴보았습니다. 이를 위해 SAS는 ‘AML Compliance Analytics Maturity Model’을 제시했고, Maturity Model의 단계를 소개함으로써 현재 각 금융기관이 AML을 위해 내부적으로 어느 정도 데이터 분석을 적용하고 있는지에 대한 자체
앞선 두번의 연재를 통해 자금세탁 방지 기술이 향후 어떤 방식으로 발전되어갈 것인지, 금융기관이 현재 운영중인 자금세탁 환경을 앞으로 어떻게 변화시켜 나가야 하는지를 살펴보았습니다. 이를 위해 SAS는 ‘AML Compliance Analytics Maturity Model’을 제시했고, Maturity Model의 단계를 소개함으로써 현재 각 금융기관이 AML을 위해 내부적으로 어느 정도 데이터 분석을 적용하고 있는지에 대한 자체
점점 더 많은 고객이 클라우드로 이동함에 따라 클라우드 인프라 비용이 중요한 요소가 되었습니다. 최초 클라우드 표준 가격 모델은 "종량제"(Pay-As-You-Go, 시간당 고정 가격) 모델이었습니다. 이 모델의 장점은 실제 사용량에 대해서만 비용을 지불하고 필요할 때 리소스를 축소할 수 있다는 것입니다. 하지만 운영환경(production environment)은 연중무휴 24시간 사용 가능한 상태를 유지해야 하는 경우가 많습니다.
최근 ChatGPT에 대한 관심이 대단합니다. 2022년 12월 공개된 지 5일만에 사용자100만 명을 기록했고, 지난 2023년 2월 기준, 월 사용자 1억 명이 넘는 서비스가 되었습니다. 마치 2016년 이세돌을 이긴 알파고 출현 당시와 같이 세간의 관심이 쏟아지고 있습니다. 사람들이 이렇게 열광하는 이유는 ChatGPT가 생성하는 답변이나 글의 수준이 사람이 생성하는 것 이상으로 훌륭하기
금융권 실시간 머신러닝 서비스 시리즈 ① 초개인화 마케팅과 차별화된 고객만족 서비스를 위해 이제 대세로 자리잡은 실시간 서비스! 금융권 실시간 머신러닝 서비스의 도입을 위한 모든 것을 알려드립니다. 여러분은 실시간 서비스하면 어떤 이미지가 생각 나십니까? 위 화면은 2018년 SAS Forum에서 실시간 분석에 대한 데모를 진행했던 영상의 일부입니다. 운전자의 자세를 캡처해서 실시간으로 운전자의
IDC 마켓스케이프 보고서에서 MLOps 플랫폼 부문 리더 제품으로 선정된 ‘SAS Model Manager’, DataRobot, Databricks, Dataiku, Domino Data Lab등에 성능 우위 입증 다양한 비즈니스 영역에서 머신러닝의 적용이 점차 활기를 띄며 증가하고 있는 가운데, 많은 IT 리더들은 인공지능과 머신러닝 기술을 선택하고 구현하기 위한 필수 기술로 ‘모델 옵스(이하 ModelOps)’를 지목하고 있습니다. AI타임즈에 따르면,
‘SAS 모델 매니저’, IDC 마켓스케이프 평가에서 머신러닝 운영 플랫폼 리더로 선정 기업의 머신러닝 모델 생산을 지원하는 광범위한 서비스 및 제품 제공 역량 보유 세계적인 분석 선두 기업 SAS가 이번에 처음 발간되기 시작한 ‘IDC 마켓스케이프: 전세계 머신러닝 운영 플랫폼 2022년도 벤더 평가[1] 보고서에서 리더 기업으로 선정되었습니다. IDC는 ‘SAS 바이야(SAS® Viya®)’에 포함된
‘2023 SAS 해커톤 대회’ 참가자 모집 2월 28일 참가자 모집 마감! 당신의 아이디어를 기다립니다 세계적인 분석 선두 기업 SAS가 매년 전세계적으로 진행하는 데이터 분석 아이디어 경진 대회 ‘2023 SAS 해커톤(SAS Hackathon)’의 참가 등록이 오는 2월 28일 마감됩니다. 누구에게나 열려있는 SAS 해커톤 대회에서 우리 사회를 이롭게 할 당신의 반짝이는 분석 아이디어를
회복탄력성을 유지하는 한 해 될 것 2022년 우리는 코로나19 팬데믹과 수많은 가족의 터전을 빼앗은 국제적 분쟁에 적응하고 회복하기 위해 노력했습니다. 에너지 가격은 급등했고, 공급망 문제 및 여러 중단 사태가 지속되었습니다. 그 결과 수 십년만에 전 세계 물가인상률은 역대 최고를 기록했고, 경제 전반에 도미노 효과를 일으켰습니다. 지난 몇 년 간 우리는
Payment Fraud는 금융기관의 지속적인 도전 과제입니다. 디지털 결제방식이 다양화되고 실시간 결제 금액이 증가함에 따라 실시간 사기 탐지 및 예방이 필수적인 시대가 되었습니다. 동시에 고객은 마찰 없는 고객 경험을 요구하기 때문에 사기 탐지 시스템은 사기 탐지 성능과 고객 불편 간의 균형이 잘 유지되도록 충분히 정교하게 운영되어야 합니다. 규칙기반(Rule Base) 탐지가 좋은
보통 분석모델 관리 프로세스는 모델개발, 모델등록, 배포, 모니터링 및 재학습으로 구성됩니다. 이번 글에서는 SAS Model Manager (MM)가 제공하는 API를 통해 분석모델 관리 프로세스가 어떻게 진행되는지 살펴보겠습니다. SAS MM은 모델 컬렉션의 생성 및 관리를 간소화하는 제품입니다. 이 웹 기반 인터페이스를 사용하면 모델 관리 프로세스를 손쉽게 자동화하고, 사용자가 모델링 프로세스의 각 단계별로 진행