SAS Japan
活用事例からデータ分析のテクニックまで、SAS Japanが解き明かすアナリティクスの全て本記事では、Critical Thinking Crew - Health Monitoring to Prevent Solitary Deathについて、チームメンバーに直接お話を聞き、背後にある思いやチャレンジなどについて解き明かします。 SAS Hackathon 2023 参加の背景 チームCTCのリーダー福永氏にとって今回のSAS Hackathon参加には特別な思いがあった。福永氏の個人的な活動として取り組んでいるプロボノを通して、孤独死にまつわる社会的課題があることを認識していたからだ。 日本では孤独死する人が年間25000人を超えていて、遺体が発見されるまでに平均2週間以上かかり、発見時に腐敗が進んでいることも多いそうです。これは高齢者の課題と捉えられがちですが、現役世代の孤独死も4割近くあるという報告があります。この社会的課題に取り組むという構想を2022年末頃から抱き始め、ソリューションの中身を漠然と考えていました。 それとは別にスマホカメラで脈拍を計測する手法があることを知った時、彼の頭の中で課題とソリューションが繋がり、構想が具体化し始めた。そこにタイミングよくSAS Hackathon開催の知らせが届いたためエントリーすることにした。 所属する部署においても企業のESG分析などに携わることもあり、ソーシャル・グッドのための活動としてハッカソン参加は会社も後押ししてくれました。 エントリー部門はヘルスケア&ライフサイエンス部門になった。福永氏にとって今回が3回目のSAS Hackathonの参加となった。1回目では数値データを、2回目ではテキストデータを扱ってきたが、3回目の今回では画像データを扱うことになった。 ハッカソンに取り組む上で直面した様々なチャレンジ 繁忙期と重なってしまった メンバー全員が非常に繁忙なタイミングと重なってしまったため、登録したあとにしばらく活動ができず、着手できたのは締め切りまで1か月を切ってからになってしまった。 結果的に最後の2週間でなんとか作り切ったという感じです。メンターさんが何度か相談会を設けてくれたこともあり、色々と困りごとを相談できましたし、良いペースメーカーになりました。 画像認識技術の習得と専用環境の準備 画像認識専門のエンジニアがメンバーにいなかったものの、画像認識に関するSASのブログとオープンソースの専用のライブラリを駆使して何とか乗り切った。まずは画像認識に関する知識を習得することろから始めた。 物体検知モデルのチュートリアルで骨格推定のやり方を学びました。遠回りのようで実はそれが一番手っ取り速かったと思います。 顔色から脈拍を推計する手法に関しては公開コードを探して利用することにした。姿勢推定のためのモデル訓練が短時間で収束するような工夫もした。また通常は必要になる環境構築のための工数を、Google Colaboratory(WEBブラウザ上で機械学習を実行できるサービス)を利用することで大幅に削減した。 また当初物体検知モデルをファインチューニングするうえで、与えられた環境とは別の環境を構築する必要がありました。そこはGoogle Colaboratoryを導入することで難なくクリア出来たのですが、GPUで事後訓練した後の物体検知モデルをCPU版に変更する部分でエラーが多発して大変でした。 その他、今回使用することにした物体検知モデルをSASとインテグレーションする部分の経験が無かったため新たな経験を得ることとなった。 具体的な取り組み内容 スマホで撮影した動画を利用 スマホで自身を撮影することで姿勢やバイタルを推定し、危険な状況になったら友人・家族に通知する自衛ツールを開発した。 一般的な見守りサービスですと、器材の設置や、知らない人に監視されている感じに抵抗感がある人が多く、特に比較的若い層にこの傾向があるとプロボノの活動を通して聞いたことがあります。そこでスマホを利用することにしたんです。 次に姿勢推定のための物体検知モデルをSAS Viya上に搭載した。スマホで撮影した動画から姿勢の状態を推定できるものだ。加えて、顔色の微妙な変化を波形から捉え、心拍数を推定した。最後に、姿勢と心拍数から、「倒れている」かつ「心拍数が極端に低い」等の閾値に該当する場合にアラートを発出する仕組みを構築した。 物体検知モデルの訓練とバイタル判定ルールの作成 使ったデータは2種類ある。まず物体検知モデルの事後訓練に必要な画像データについては、CTC社内にあった画像データを利用した。最終的に厳選した1500枚でモデルの事後訓練をした。 事後訓練には画像のアノテーションが必要だった。アノテーション作業の内容は、映っている人物を四角い枠線で囲い、囲われた人物がどのような姿勢でいるのか注釈を付ける、というものだ。姿勢の種類は全部で4種類、立っている、寄りかかっている、座っている、倒れている、の中からアノテーション作業者が手動で選択することになる。 そこは子会社のCTCひなり株式会社の障がい者スタッフさんの助けを借りることができ、大幅な工数削減を実現できました。1500枚のアノテーション作業を1週間で完了してもらえました。 脈拍の低下の推定に必要な心拍データについては、オープンデータを利用した。このデータは寝ている状態から運動して休息するという一連の流れを時系列で保持する波形データだ。 「こういう状況でこういう数値であれば生存を疑うレベルに該当すると言って良い」というルールを作るためにこのデータを用いました。心拍データのクレンジング作業には、Viyaのデータ準備機能を使いました。こちらはGUI上で簡単に実行できました。 成果 孤独死抑止ユースケースとして開発したが、事務作業員や建築現場の作業員のヘルスチェック、大規模災害時のトリアージ支援等、多くの応用例が考えられる。結果として技術部門賞を受賞することができた。 非常に名誉なことで会社のみんなや家族・友人もとても喜んでくれました。また、安定したViya環境を好きなだけ触れたことも大きな収穫でした。普段の業務では中々使うことのない機能を使うことができ、勉強になりました。 展望
Hack SAS! SAS HackathonはSAS社が毎年春に開催する完全オンライン開催のハッカソン・イベントです。参加チームは開催期間の1か月間を使って、自分たちで設定した社会課題やビジネス課題を、SAS Viya(および任意のツール)を使って解決に導きます。エントリーできる部門が複数用意されており、参加チームによって選べるようになっています。2023年は部門が計10個あり、部門ごとの賞に加え、技術賞、特別賞、地域賞の3つの部門横断賞が用意されました。各賞ごとに個別の審査基準が設けられているため、技術レベルを高めるのも良し、ビジネスインパクトを狙いに行くのも良し、等々様々な戦い方があり得ます。なお審査は部門ごとにSAS社員から選ばれたインダストリ・エキスパートが実施するため、常に適正な評価が期待できます。 今年は世界各国から130チーム以上がエントリーしました。受賞チームは9月開催のSAS Exploreに招待されました。その他ハッカソンについての詳しい内容については、EnterpriseZine編集部による日本語のSAS Hackathonについての紹介記事もありますのでご興味があればご覧ください。 ところでSAS Hackathonは他のハッカソン・イベントと比べてどんなところがユニークなのでしょうか?よくあるハッカソン・イベントでは、特定のツールの使い方を試行錯誤を通して学ぶ、であったり、新しいサービスやアプリケーションの開発、などが目的になっていますが、SAS Hackathonでは以下3点を主な目的にしています: ビジネス課題の解決 Data for Goodの観点から、データ分析の結果をより良い社会の実現のために使ってもらう(データ活用による人道支援や社会課題の解決) データリテラシーを備えた人材の育成・輩出・ネットワーキング そしてこれらの目的の先にあるもの、つまりはアプリケーションの開発およびサービス化といった段階における商業化の支援もSAS Hackathonで行います。もちろん、知的財産は参加者が保有します。 様々なオモテナシ 以上の3つの目的を達成するために重要な要素の一つが、組織の垣根を越えたコラボレーションの実現です。その実現を手助けするため、全世界のSAS社員が様々な工夫をして参加者をもてなします。オモテナシ駆動型ハッカソン・イベント、それがSAS Hackathon、と言っても過言ではありません。ではどのようにしてSAS社員はSAS Hackathonの参加者をもてなすのでしょうか? メンターによるオモテナシ イベントにエントリーしたチームにはそれぞれメンターが付きます。メンターはSAS製品やデータ分析に詳しいSAS社員から選ばれ、チームが成功裏にハッカソンを終えられるようサポートします。分からないことがあったら何でもメンターに質問できます。 学習コンテンツによるオモテナシ 普段は有償で提供されているSASのラーニング・コースやオンデマンド学習コンテンツが、ハッカソン期間中は参加者に無償で提供されるため、技術的なキャッチアップやデータリテラシーの習得がやり易くなっています。 分析環境によるオモテナシ 分析環境も無償で提供されます。既に構築済みですぐに使えるSAS Viya環境を使って直ちに分析を開始できます。そこにはJupyter Hubも入っていてPythonやRが使えます。環境構築の手間が要りません。その他、アプリケーション開発を簡便に行うためのツールなども提供されます。詳細はこちらのページをご覧ください。それ以外のツールを使いたい場合は、参加チーム自身で準備することになりますが、基本的にどんなツールを使ってもOKです。 フォーラムによるオモテナシ また、参加チームはSAS Hacker's Hubで他の参加チームと交流したりディスカッションすることができます。参加者同士のネットワーキングの場にもなっています。 自由闊達なムード醸成によるオモテナシ SASと聞くと少々お堅いイメージを持たれる方も多いかも知れません。しかし近頃のSAS社員はオレンジ色のSAS Hackathonフーディーを着て、課題解決のためのコラボレーションの重要性を表現したラップを歌います。 It's more than a competition It's your story told, the goals that
一、背景の紹介 過去のSAS Viya機能紹介のブログで、クラウドネイティブアーキテクチャを採用したSAS Viyaのユーザーのワークロードのリソース管理の仕組みと方法を紹介しました。これらの機能のほとんどはKubernetesの特徴や機能によって実現されていますが、実は、SAS Viyaにはワークロードの管理を強化する特別な機能が搭載されています。この機能のおかげで、ユーザーは従来に比べてさらに高度で柔軟な負荷管理が可能となり、これによりクラウドのコストを節約し、業務プロセスをより効率的に運用することができます。この記事では、まずこの新しい機能の主な特徴や基本的な動き方を紹介します。 二、機能の特長と価値 ビジネス上の分析業務は、その実行部門や目的、優先順位、データの規模、そして使用される分析手法によって異なる性質を持っています。多様な分析タスクを一つの環境で実行する際、さまざまな問題が生じることが知られています。例えば、低優先度のタスクが計算リソースを占めてしまうこと、あるいはシステム全体に影響するようなエラー、そして計算リソースの不足や無駄などです。 このような問題に答えを提供するのがSAS Viyaの「SAS Workload Orchestrator」という機能です。ここでは、その機能の特長と価値について解説します。 1. コストとアジリティのバランスを最適化 ・キューの優先順位付け: さまざまなワークロードの優先度を定義し、重要なタスクが最初に実行されることを保証します。 ・負荷分散: リソースの使用を最適化し、タスクの適切な分散を実現。 ・Kubernetesでの実行: 現代のクラウド環境に最適化された実行環境。 ・ユーザーの中断を最小限に: 重要な作業の妨げとなる中断を避けます。 2. スループット、可用性、生産性の向上 ・最適な実行順序: 作業の効率とスピードを最大化。 ・並列処理: 複数のタスクを同時に高速で処理。 ・ワークロードの事前中断と自動再開: エラーが生じた場合でも自動でジョブを再開し、データサイエンティストの作業が中断されることなく最良のモデルの構築を続けられる。 3. 管理の簡素化 ・SASのワークロードの集中管理: ポリシーやプログラム、キュー、優先度を一元管理。 ・リアルタイムモニタリング: ジョブの進行状況やリソースの使用状況をリアルタイムで確認。 ・オンプレミスまたはクラウドでの実行: 用途や環境に合わせて選択可能。 結論として、SAS Workload Orchestratorは、高度なビジネスの要件に応じて分析タスクの実行を効率的に行うための強力なツールです。そのグラフィカルなインターフェースを通じて、リソースの一元的な管理が可能となり、ビジネスの生産性と価値を最大限に引き出すことができます。 三、「SAS Workload Orchestrator」の画面と用語定義 それでは、「SAS Workload Orchestrator」の魅力的な機能とその価値を理解したところで、具体的に「SAS Workload Orchestrator」の操作画面や用語について詳しく解説していきましょう。ぜひ参考にしてください。 1.用語定義 SAS
データサイエンスの使いどころ・・・攻めと守りの圧倒的な違い 以前のブログで、データ活用における攻めと守りについてお話しました。今回は小売業を例に多くのデータ活用プロジェクトが陥りやすい罠と、真の目的達成のための方法についてご紹介します。 小売業の目的はもちろん他の業種企業と変わらず、収益の最大化です。昨今データ分析を武器として売り上げの最大化、コストの削減、業務プロセスの生産性向上を目指す企業が増えてきています。時には、データサイエンティストが、データサイエンスを駆使してプロジェクトを実行しているケースもあるでしょう。 ここで、今一度現在取り組んでいる、またはこれから取り組もうとしているデータサイエンスやAI活用のプロジェクトがどんな利益を自社にもたらすのかを改めて考えてみましょう。昨今、需要予測についての相談が非常に多いので、ここでは需要予測について考えてみます。 弊社にご相談いただくケースの中で、少なくない企業が、需要予測をこのブログで言うところの「守りの意思決定」としてとらえています。多くのケースで、過去の実績をベースに将来の需要を予測することで、在庫過多や欠品を減らそうというプロジェクトに投資をしていたり、しようとしています。言い換えると、過去の実績を学習データとして、将来を予測するモデルを構築し、ひとつの将来の需要予測を作成し、それを在庫を加味したうえで、発注につなげています。 手段が目的化することで見失う可能性のある本来の目的とは 非常に典型的なAI活用、データサイエンス活用かと思いますが、実は、「AIで予測」、「機械学習で予測」といった言葉で最新のデータ活用をしているかのような錯覚に陥っているケースが見受けられます。数十年前から行われており、昨今でも同様に行われている、機械学習を用いた典型的な需要予測は、「守り」です。すなわち、どんなに多くの種類のデータを使うかどうかにかかわらず、過去の傾向が未来も続くという前提のもとに予測モデルを作成している場合には、あらかじめ定義した前提・業務プロセスの制約の下で、機会損失を最小化するために予測精度をあげているにすぎません。 つまり、そのような前提での需要予測は、小売業の収益向上という観点では、期待効果が限定的であるということです。では、最終的な収益の最大化を実現するには、何をすべきでしょうか? 収益を向上させるためにはもちろんより多くの商品を売ることにほかなりません。より多くの商品を売るためには当然、顧客の購買心理における購買機会に対して販売を最大化する必要があります。あるいは、顧客の購買心理そのものを潜在的なものから顕在化したものにすることも必要でしょう。つまり、販売機会を最大限に活用するということは、店舗中心ではなく、顧客中心に考えるということです。 小売業における攻めのデータ活用の1つは、品ぞろえの最適化 このように、顧客中心に考えることで初めて最適な品揃えの仮説検証のサイクルが可能となります。過去のデータは、単に過去の企業活動の結果であり、世の中の「真理~ここでは顧客の本当の購買思考」を表しているわけではありません。真理への到達は、仮説検証ベースの実験によってのみ可能になります。わかりやすく言うと皆さんよくご存じのABテストです。このような実験により、品ぞろえを最適化することで、販売機会を最大化することが可能なります。そのプロセスと並行して、オペレーショナルな需要予測を実践していくことが重要となります。 需要予測と品ぞろえ最適化の進化 昨今、AIブーム、データサイエンティストブーム、人手不足や働き方改革といったトレンドの中で、従来データ活用に投資してこなかった小売業においても投資が進んでいます。しかし多くのケースでこれまで述べてきたような守りのデータ活用にとどまっていたり、古くから行われている方法や手法にとどまっているケースが見受けられます。歴史から学ぶことで、無用なPOCや効率の悪い投資を避けることができます。今、自社で行っていることがこの歴史の中でどこに位置しているかを考えてみることで、投資の効率性の向上に是非役立てていただければと思います。 小売業におけるデータ活用のROI最大化にむけたフレームワーク SASでは長年、小売業や消費財メーカのお客様とともにお客様のビジネスの課題解決に取り組んできました。その過程で、小売業・消費財メーカー企業内の個々の業務プロセスを個別最適するのではなく、それら個々の業務プロセスを統合した、エンタープライズな意思決定フレームワークが重要であるとの結論に至っています。AIやデータサイエンスという手段を活用し、データドリブンな意思決定のための投資対効果を最大化するための羅針盤としてご活用いただければと思います。