SAS Japan

活用事例からデータ分析のテクニックまで、SAS Japanが解き明かすアナリティクスの全て
Machine Learning | Programming Tips
SAS Viyaにディープラーニングが登場! さっそく画像分類してみた。

SAS Viyaがリニューアルされまして、ついにディープラーニングが登場しました! SAS ViyaのディープラーニングではオーソドックスなDeep Neural Network(DNN)から、画像認識で使われるConvolutional Neural Network(CNN、畳込みニューラルネットワーク)、連続値や自然言語処理で使われるRecurrent Neural Network(RNN、再帰的ニューラルネットワーク)まで利用可能になります。 ディープラーニングを使うことのメリットは、従来の機械学習やニューラルネットワークが苦手としている画像や文章を認識し、高い精度で分類や推論することが可能になります。 高い精度というのは、ディープラーニングのモデルによっては人間の目よりも正確に画像を分類することができるということです。 例えばコモンドールという犬種がありますが、この犬はモップのような毛並みをしていて、人間ではモップと見間違えることがあります。 これは犬? それともモップ? こういう人間だと見分けにくい画像に対しても、ディープラーニングであれば、人間よりも正確に犬かモップかを見分けることができるようになります。 というわけで、今回はSAS Viyaのディープラーニングを使って画像分類をしてみたいと思います。 ディープラーニングの仕組み 画像分類のディープラーニングではCNNを使います。 CNNは画像の特徴を探し出す特徴抽出層と特徴から画像を分類する判定層で構成されています。   特徴抽出層は主に畳込み層とプーリング層で構成されています。 畳込み層で入力画像に対し、ピクセルの特徴(横線の有無とか斜め線とか)を探し出し、プーリング層で重要なピクセルを残す、という役割分担です。 判定層は、特徴抽出層が見つけた特徴をもとに、画像の種類を分類します。 例えば犬と猫の分類であれば、特徴抽出層が入力画像から、面長で大きな鼻の特徴を見つけだし、犬と分類します。   または、丸っこい顔立ちと立った耳の特徴を見つけだし、猫と分類します。   SAS Viyaで画像を扱う SAS ViyaディープラーニングでCifar10をネタに画像分類をしてみたいと思います。 Cifar10は無償で公開されている画像分類のデータセットで、10種類の色付き画像60,000枚で構成されています。 各画像サイズは32×32で、色はRGBです。 10種類というのは飛行機(airplane)、自動車(automobile)、鳥(bird)、猫(cat)、鹿(deer)、犬(dog)、蛙(frog)、馬(horse)、船(ship)、トラック(truck)で、それぞれ6,000枚ずつ用意されています。 画像は総数60,000枚のうち、50,000枚がトレーニング用、10,000枚がテスト用です。   画像データは以下から入手することができます。 https://www.cs.toronto.edu/~kriz/cifar.html さて、Cifar10を使って画像分類をしてみます。言語はPython3を使います。 SAS Viyaで画像分類をする場合、まずは入手したデータをCASにアップロードする必要があります。 CASはCloud Analytics Servicesの略称で、インメモリの分散分析基盤であり、SAS Viyaの脳みそにあたる部分です。 SAS Viyaの分析は、ディープラーニング含めてすべてCASで処理されます。 CASではImage型のデータを扱うことができます。 Image型とは読んで字のごとくで、画像を画像フォーマットそのままのバイナリで扱えるということです。

Machine Learning
SAS Japan 0
機械学習アルゴリズム選択ガイド

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはHui Liによって執筆されました。元記事はこちらです(英語)。 この記事では、関心対象の課題に適した機械学習アルゴリズムを特定・適用する方法を知りたいと考えている初級~中級レベルのデータ・サイエンティストや分析担当者を主な対象者としたガイド資料を紹介し、関連の基本知識をまとめます。 幅広い機械学習アルゴリズムに直面した初心者が問いかける典型的な疑問は、「どのアルゴリズムを使えばよいのか?」です。この疑問への答えは、以下を含む数多くの要因に左右されます。 データの規模、品質、性質 利用できる計算時間 タスクの緊急性 データの利用目的(そのデータで何をしたいのか?) 経験豊富なデータ・サイエンティストでも、どのアルゴリズムが最も優れたパフォーマンスを示すかは、複数の異なるアルゴリズムを試してみなければ判断できません。本稿の目的は、特定の状況にのみ有効なアプローチを紹介することではなく、「最初に試すべきアルゴリズム」を何らかの明確な要因にもとづいて判断する方法についてガイダンスを示すことです。 機械学習アルゴリズム選択チートシート この機械学習アルゴリズム選択チートシートは、幅広い機械学習アルゴリズムの中から特定の課題に最適なアルゴリズムを見つけ出すために役立ちます。以下では、このシートの使い方と主要な基礎知識をひと通り説明します。 なお、このチートシートは初心者レベルのデータ・サイエンティストや分析担当者を対象としているため、推奨されるアルゴリズムの妥当性に関する議論は省いてあります。 このシートで推奨されているアルゴリズムは、複数のデータ・サイエンティストと機械学習の専門家・開発者から得られたフィードバックやヒントを取りまとめた結果です。推奨アルゴリズムについて合意に至っていない事項もいくつか残っており、そうした事項については、共通認識に光を当てながら相違点のすり合わせを図っているところです。 利用可能な手法をより包括的に網羅できるように、手元のライブラリが拡充され次第、新たなアルゴリズムを追加していく予定です。 チートシートの使い方 このシートは一般的なフローチャートであり、パス(楕円形)とアルゴリズム(長方形)が配置されています。各パスでYES/NO、または高速性/正確性を選びながら最終的に到達したものが推奨アルゴリズムとなります。いくつか例を挙げましょう。 次元削減を実行したいものの、トピック・モデリングを行う必要がない場合は、主成分分析を使うことになります。 次元削減が不要で、応答があり、数値を予測する場合で、高速性を重視するときには、デシジョン・ツリー(決定木)または線形回帰を使います。 次元削減が不要で、応答がない場合で、階層構造の結果が必要なときには、階層的クラスタリングを使います。 場合によっては、複数の分岐に当てはまることもあれば、どの分岐にも完璧には当てはまらないこともあるでしょう。なお、利用上の重要な注意点として、このシートは、あくまでも基本的な推奨アルゴリズムに到達できることを意図しているため、推奨されたアルゴリズムが必ずしも最適なアルゴリズムでない場合もあります。多くのデータ・サイエンティストが、「最適なアルゴリズムを見つける最も確実な方法は、候補のアルゴリズムを全て試してみることだ」と指摘しています。 機械学習アルゴリズムのタイプ このセクションでは、機械学習の最も一般的なタイプを取り上げ、概要を示します。これらのカテゴリーについて十分な知識があり、具体的なアルゴリズムの話題に進みたい場合は、このセクションを飛ばし、2つ先のセクション「各種アルゴリズムの概要と用途」に進んでいただいてかまいません。 教師あり学習 教師あり学習アルゴリズムは、実例のセット(入力データと出力結果)を基に予測を行います。例えば、過去の販売データを用いて将来の価格を推定することができます。教師あり学習では、ラベル付きのトレーニング用データからなる入力変数と、それに対応する望ましい出力変数があります。アルゴリズムはトレーニング用データを分析し、入力を出力にマッピングする関数を学習します。この関数は、トレーニング用データにおける入力/出力の関係を一般化することによって推定されます。この関数に新しい未知の入力データを与えると、それに対応する出力が算出され、その出力が未知の状況における結果の予測値となります。 分類:データを用いてカテゴリー変数を予測する場合、教師あり学習は「分類」と呼ばれます。これは例えば、画像にラベルや標識(例:犬または猫)を割り当てるようなケースです。ラベルが2つしかない場合は「2値(バイナリ)分類」、3つ以上のラベルがある場合は「マルチクラス分類」と呼ばれます。 回帰:連続値を予測する場合、その教師あり学習は「回帰問題」となります。 予測:過去と現在のデータを基に将来を予測するプロセスであり、最も一般的な用途は傾向分析です。具体例として一般的なのは、当年度および過去数年の販売実績を基に次年度の販売額を推定することです。 半教師あり学習 教師あり学習を行う上での課題は、ラベル付きデータの準備に多大な費用と時間がかかりかねないことです。ラベル付きデータが限られている場合には、ラベルなしの実例データを用いて教師あり学習を強化することができます。これを行う場合は、機械にとって完全な「教師あり」ではなくなるため、「半教師あり」と呼ばれます。半教師あり学習では、ラベルなしの実例データと少量のラベル付きデータを使用することで、学習精度の向上を図ります。 教師なし学習 教師なし学習を実行する場合、機械にはラベルなしのデータのみが与えられます。学習の目的は、クラスタリング構造、低次元の多様体、スパース(疎)ツリーおよびグラフなど、データの基底をなす固有パターンを発見することです。 クラスタリング:あるグループ(=クラスター)内の実例データ群が、その他のグループ内の実例データ群との間と比べ、(所定の基準に関して)高い類似性を示すような形で、実例データセットをグループ化します。この手法は、データセット全体を複数のグループにセグメント化する目的でよく使われます。グラスタリングの実行後に各グループ内で分析を実行すると、固有パターンを容易に発見できることが多々あります。 次元削減:検討の対象とする変数の数を減らします。多くの用途では、生データに極めて多次元の特徴が含まれており、一部の特徴は目的のタスクに対して冗長または無関係です。次元削減は、データに潜む真の関係性を発見するために役立ちます。 強化学習 強化学習は、環境からのフィードバックを基に「エージェント」(課題解決の主体者。例:ゲームのプレイヤー)の行動を分析および最適化します。機械は、取るべきアクションの選択肢を事前に教えられるのではなく、どのようなアクションが最大の報酬(例:ゲームのスコア)を生み出すかを発見するために、さまざまなシナリオを試行します。他の手法には見られない強化学習ならではの特徴は「試行錯誤」と「遅延報酬」です。 アルゴリズム選択時の考慮事項 アルゴリズムを選択する際は、正確性、トレーニング時間、使いやすさという3つの側面を常に考慮する必要があります。多くのユーザーは正確性を第一に考えますが、初心者は自分が最もよく知っているアルゴリズムに意識が向きがちです。 データセットが与えられたとき最初に考える必要があるのは、どのような結果になるにせよ、何らかの結果を得る方法です。初心者は、導入しやすく結果が素早く得られるアルゴリズムを選ぶ傾向がありますが、分析プロセスの最初の段階ではそれで問題ありません。まずは、何らかの結果を得て、データの概要を把握することを優先します。その後、データに対する理解を深め、結果をさらに改善することを目指し、より高度なアルゴリズムを試すことに時間を費やせばよいのです。 ただしこの段階でも、最高の正確性を示した手法が必ずしもその課題に最適なアルゴリズムであるとは限りません。通常、アルゴリズムから本来の最高パフォーマンスを引き出すためには、慎重なチューニングと広範囲のトレーニングが必要になるからです。 各種アルゴリズムの概要と用途 個別のアルゴリズムについて知識を深めることは、得られる結果と使い方を理解するために役立ちます。以下では、チートシートに掲載されている中でも最も基本的なアルゴリズムの詳細と、それらを使用すべき状況に関するヒントをまとめます。 線形回帰とロジスティック回帰 線形回帰は、連続従属変数 \(y\) と1つ以上の予測変数 \(X\) との関係をモデリングするためのアプローチです。この場合、\(y\)

Artificial Intelligence | Machine Learning
小林 泉 0
人工知能:ブームと現実を切り分けて認識するために

現在大きなブームとなっているAIですが、行き過ぎた期待と警戒がその現実を見誤らせ、企業における経営課題の解決において、タイムリーな価値創出を停滞させている場面も見受けられます。現実を正しく捉えるための記事を、SASの上級副社長およびCTOであるオリバー・シャーベンバーガー(Oliver Schabenberger)が書いていますので、今回はそれを日本語訳してお届けします。 === 私たちはエキサイティングな時代に生きています。私たち人間と機械、オブジェクト(物体)、モノとの関係は急速に変化しつつあります。 洞窟で暮らしていた頃から、人間は受動的な(自動的に動くわけではない)道具と自分の声に自らの意思を託してきました。今日では、マウスとキーボードは操作したとおりに動きますし、Amazon Echoなどのスマートデバイスは、照明の点灯のような単純なタスクや、より複雑なタスク(例:人間の質問にアナリティクスを用いて応答する)の実行を手助けしてくれます。 しかし、人工知能(AI)の発展により、潮目が変わる可能性があります。機械は受動的なオブジェクトから、人間の生活に自らを織り込む能動的な存在へと変貌を遂げることができるのでしょうか? 機械が人間を動かすようになるのでしょうか、それとも人間が機械を動かし続けるのでしょうか? オブジェクトが「あなたの代わりに〇〇を済ませました」と人間に報告するようになるのでしょうか、それとも、人間が今後も何をすべきかをオブジェクトに指示し続けるのでしょうか? あらゆるモノがよりスマート、よりインテリジェントになっていく中、私たち人間は、自律型のインテリジェンスが取り仕切る生活空間の「囚われ人」となってしまう恐れはないのでしょうか? そのような状況に私たちはどこまで近づいているのでしょうか? AIの現状 あなたがもし、機械が世界を征服するのではないかと夜な夜な心配しているとしたら、どうぞぐっすり眠ってください。今現在使われているテクノロジーでは、決してそうした事態は起こりません。昨今では、少しでも賢い動作や想定外の動作をすれば何でもAIと呼ぶのがトレンドのようですが、多くは実際にはAIではありません。私の電卓は、私よりも計算能力が優れていますが、AIではありません。決定木もAIではありませんし、SQLクエリの条件句もAIではありません。 しかし、AIへと向かうトレンド、すなわち「機械、デバイス、アプライアンス、自動車、ソフトウェアに更なるスマート性を組み込む」というトレンドが存在するのは事実です。 人間よりも圧倒的な正確さでタスクを実行できるアルゴリズムの開発には、驚異的な進展が見られます。少し前までコンピューターには囲碁は無理と思われていたにもかかわらず、今や機械が人間を打ち負かし、人間には敵わないレベルへと突き進んでいます。また医療分野では、医用画像から特定タイプのガンを発見するアルゴリズムの正確性が、放射線科医と同等レベルに達しており、まさに患者の人生を一変させるような成果です。 これらのアルゴリズムが超人的な能力を示すのは、与えられた仕事を高い信頼性および正確性で、不眠不休で反復実行するからです。とはいえ、人間のように思考または行動できる機械を生み出す段階からは程遠いのが現状です。 現在のAIシステムは、人間が行うタスクを「コンピューター化された賢い方法」で実行するようにトレーニングされますが、トレーニングの対象は1つのタスクのみです。囲碁をプレイできるシステムは、ソリティアやポーカーをプレイすることができず、そのスキルを習得することもありません。自律走行車を運転するソフトウェアは、家の照明を操作することができません。 これは、この種のAIが力不足ということではありません。むしろ、あらゆる用途に高い専門性を提供できるため、多くの業種、恐らく全ての業種に変革をもたらすポテンシャルを秘めていると言えます。しかし、AIで何を成し遂げることができるかに関しては、先走りは禁物です。トレーニング用データにもとづき、教師あり手法を用いてトップダウン方式で学習するシステムは、データの内容を超えて成長することができません。つまり、こうしたシステムには創造、革新、推論(論理的に思考)は不可能です。 「信頼の飛躍的拡大」を選ぶかどうかは人間次第 たとえアルゴリズムがインテリジェンスを持つ日が来るとしても、必ずしも私たちの人生をアルゴリズムに委ねる必要はありません。アルゴリズムの利用を意思決定支援システムに留める、という選択も可能です。その対極にあるのは、あらゆる意思決定を人間の代わりにアルゴリズムに行わせるという選択であり、これは「(人間の機械に対する)信頼の飛躍的拡大」の究極と言えます。 そこには、意思決定において人間の介入は一切ありません。機械の自律性を手放しで受け入れて初めて、「真のAI」を受け入れる準備が整ったことを意味すると筆者は考えます。しかし、アルゴリズムが信頼できる偏りのない意思決定を行えるようになり、それがひいては人間に最大の利益をもたらすことが実証されうるとして、自分の人生の手綱を渡し、自分は何も入力せずにアルゴリズムに意思決定を行わせることを、あなたは心地よく感じるでしょうか? 自由に判断させた場合、機械はどれほど的確に振る舞うと期待しますか? 機械がどれほど短時間で仕事を学習すれば満足でしょうか? そして、学習を重ねる中、機械はいつモラルを獲得するのでしょうか? こうした質問を不快に感じるとしても、ご安心ください。あなただけではありません。筆者は、ソフトウェア・エンジニアがプログラミングしたモラルや発展途上のアルゴリズムが学習したモラルの不完全さのせいで命を失うよりは、自分自身の愚かさのせいで命を失う方を選びます。 インテリジェンスという幻想は今現在、完全に人間の掌中にあり、当面は人間のコントロールなしでは存在しえません。 当面私たちがAIに望めるのは、つい感心してしまうほどの賢さです。その他はブームに便乗した大騒ぎに過ぎないでしょう。 将来への準備 現在のような形のAIにはインテリジェンスがあるのでしょうか? そうではないと筆者は考えます。 インテリジェンスと呼ぶためには、何らかの形の創造性、革新性、直感力、自主的な課題解決力、感受性が必要です。私たちが今現在、ディープ・ラーニングにもとづいて構築しているシステムは、こうした特性を備えることができません。AIがいつインテリジェンスを獲得するのか、その時期をここで予測するつもりはありません。数十年前には「その段階に近づいており、数十年後には機械が人間のように行動したり思考したりするようになる」と考えられていましたが、そうはなっていません。今日のテクノロジーでは、依然としてこの問題を解決できないのです。 人類が「真のAI」の時代に到達するためには、破壊的なテクノロジー・シフトを経なければなりません。人類はその解決策をまだ発見していないと考えます。ただし、その探究を続けていることは確かです。

Data Visualization
SAS Visual Analytics 8.2 新機能概要

2017年11月にリリース予定の「SAS Visual Analytics 8.2」に搭載予定の新機能概要をご紹介します。 【SAS Visual Analytics 8.2 新機能概要】 サードパーティ・ビジュアライゼーション D3.jsやC3、あるいはGoogleチャートの機能を活用し、VAに標準装備のチャートタイプでは表現できない、より柔軟で洗練されたチャートを描画し、レポートに組み込むことが可能です。 新規追加ビジュアライゼーション バブルチェンジプロット、平行座標プロット、スケジュールチャート、など、新たに9種類のチャートオブジェクトが追加されます。 オブジェクト間の自動リンク&フィルタ設定 レポート内の全てのオブジェクトを自動的に連係させることで、効果的でインタラクティブなレポートを簡単に作成可能です。その際、一方向のフィルタなのか双方向のフィルタなのかを指定することができます。 レポート自動保存&復元 作成中のレポートは定期的に自動保存されます。これによって、仮に保存し忘れてログオフしたとしても、再ログオン時に前の状態を復元することができます。 カスタム領域塗りつぶし VA7.4と同様に、地図上にカスタムで指定した領域を塗りつぶして描画することが可能です。 地図機能拡張 Esri地図データとの連係機能が拡張され、デモグラフィック情報の活用が可能になります。例えば地図上に表示されている自店舗群を選択し、周辺住民の平均年収や年齢などの情報を把握でき、より効果的なロケーションアナリティクスが可能になります。  

1 43 44 45 46 47 56