全般

全般

Analytics | Students & Educators
アナリティクス入門講義:記述的アナリティクスと可視化

SASが提供する大学講義「アナリティクス入門」のブログ・シリーズ、1回目の前回はイントロダクションとして「アナリティクスとは」についてまとめました。今日は4つのアナリティクスのレベルの1つ目、記述的アナリティクスについてまとめます。 前回も書いたように、記述的アナリティクスは、過去に何が起こったか、いま何が起こっているかを知るためのアナリティクスです。データの集計し、統計量を計算したり、集計結果を表やグラフを用いて可視化したりすることで、データを理解したり情報伝達をすることが目的です。 納得して仕事をするために 私の娘が小学校を卒業するとき、「卒業式は友達みんな袴を着るって言ってるよ!」と言い出しました。つまり、だから自分も袴を着たいと主張しているわけです。「小学校の卒業式なんて一生に一回だしな…」なんてよくわからない理屈でレンタルしましたが、蓋を開けてみると、3割ぐらいの女子しか着ていませんでした。小学生の言う「みんな」は信じてはいけません。 ところで、SAS Japan では、毎年夏休みに「親子でデータサイエンス」というイベントを開催しています。小学生とその保護者が、一緒にデータを活用したポスターを作るイベントです。何年か前、自分のおこづかいが少ないと感じた小学生が、おこづかいアップを目指すためのポスターを制作しました。学校のお友達に毎月のおこづかいの金額をアンケートし、集計した結果をヒストグラムに表し、平均値、中央値、最頻値を算出して、親を説得するための材料にしたのです。「みんな私よりおこづかい多いよ!」という主観的で非定量的な主張より、このようにデータとグラフで示されると、親は納得せざるを得ません。 子供が親を説得するのに限らず、組織として多くの人が関わる仕事では、ある種の同意を形成する必要があります。そこには納得感が必要であり、そのためには客観的なデータを示すことが役に立ちます。同意が形成されていることを、英語で “be on the same page” と表現しますが、同じページの同じ図表を見ていることが重要なのです。おそらく、どこの会社でも同様のものがあると思いますが、SAS Japan では毎月、全社員が参加する(ことになっている)ミーティングのなかで、現在の売上の状況が報告されます。どの部門が目標に対してどれぐらいの位置にいて、来月以降はどの程度の売上を予測しているのか、図表を使って全社員に共有します。そのことにより、全員が同じ目標に向かって活動することができます。 可視化の役割 データサイエンスという言葉には、人工知能や機械学習のイメージが強いかもしれませんが、実際の社会におけるデータ活用では、まだまだこのような可視化の役割が大きいと感じています。多くの人の同意を得るために客観的なデータを提示するだけでなく、日常的なデータをモニタリングし、非日常的な変化を検知してアラートを上げることができます。例えば新型コロナウイルスの陽性者は毎日報告されて、その遷移が可視化されています(例: 東京都のページ)。これにより、「感染者が増えてきたな」と感じることができますし、数値が基準を超えると、まん延防止措置や緊急事態宣言などの対策が取られることになります。 他にも、例えば工場のカーボン・フットプリントの総量が規制されているような場合、各ラインが毎日どれぐらいエネルギーを消費しているかについての情報を管理することが必要になります。このためには、データを集計し、報告する必要があります。毎日することですので、手作業で実施するのは大変です。データ取得から報告書作成までを自動化できれば、仕事の効率を上げることができます。そのためには、どんな分析をするか、だけではなく、いつデータを持ってきて、分析結果をどこにどのタイミングで出力するかを考慮してシステムを設計する必要があります。世の中には、まだまだこのように記述的アナリティクスにより解決できる課題が多く残っていると思われます。 可視化をサービスの透明性の確保のために行っている例もあります。米国のダーラム市の事例では、警察が市民の信頼を得るために、警察官の活動データを可視化して市民が閲覧できるようにしました。逮捕、出勤、苦情、トレーニングなどのデータを集め、指標をダッシュボードに表示します。市民が自分でダッシュボードを操作して「分析」することができれば、より「自分が調べている」感が出て納得しやすくなり気がします。 記述的アナリティクスとデータ準備、データ探索 記述的アナリティクスは記述統計量を計算したり、データをグラフで表したりするだけだから簡単だ、と思われるかもしれませんが、実際はそうではありません。可視化も含めたデータ分析のためには準備が必要で、この工程に80%もの時間が使われることも珍しくありません。データはどこにあるのか、どのようにアクセスするのか、そのデータの項目は何を意味しているのか、入力漏れはないか、ありえない値が入力されていないか、表記は統一されているか、複数のデータソースに整合性はあるか、など、正しいデータ分析のために必要な準備は多岐にわたります。これについては、データの管理と準備の回で詳細を紹介します。 逆に、データの準備のために記述的アナリティクスが活用されることもあります。例えば、記述統計量やヒストグラムにより各変数の分布を調べることで、それが想定している分布と一致しているか、おかしな値が入力されていないかをチェックすることができます。変数間の相関を見たり、散布図を描いたりすることで、異常値を発見しやすくなることもあります。 また、このようなデータ探索は、診断的アナリティクスや予測的アナリティクスのような、さらなるデータ分析のための準備にも使われます。変数の分布をみることで、どのような統計モデルを当てはめるかを検討することができます。機械学習の精度を上げるためには、変数を操作して適切な特徴量をつくることが必要ですが、そのために変数の分布や欠損をチェックし、変数変換や補完を行うかどうかを決定します。 このように記述的アナリティクスは、データの準備から高度なアナリティクスまで、幅広いフェーズに活用される基礎的なスキルです。 記述的アナリティクスの学習 SASソフトウェアで記述的アナリティクスを実践するときは、SAS Visual Analytics を活用するのが便利です。マウス操作でデータの可視化とレポート作成、データ分析を行うことができます。 学生であれば、学習用ポータル Skill Builder for Students に登録して、e-learningで学ぶことができます。「SAS Visual Analytics 1 for SAS Viya: Basics」というコースでは、データ準備と可視化、レポーティングを学ぶことができます。ぜひご活用ください。

Analytics | Students & Educators
アナリティクス入門講義:イントロダクション

SASのビジョンは「データがあふれる世界をインテリジェンスに満たされる世界に変える」ですが、そのためにはデータの活用について知っている人材が世の中でさまざまな役割を担うことが重要だと考えています。そこで、SASはグローバルで教育・アウトリーチ活動を実施しています。 SAS Japanでは、アナリティクスを学習するための入門編として、同志社大学や上智大学で講義を提供しています。この講義では、SAS社員が講師となり、アナリティクスの基本的な考え方や各業界での活用事例、アナリティクスを実現するためのテクノロジーなどを紹介します。SASソフトウェアを活用した実際のデータ分析に取り組む前に、アナリティクスがどこで活用されているのか、何のために使われているのかについて、データサイエンティストを目指す学生以外にも知ってほしいと考えて講義を構成しました。実際は90分×15回程度の講義なのですが、このブログ・シリーズでは講義の内容をまとめて紹介します。 アナリティクスとは 「アナリティクス(analytics)」はanalysisから派生した言葉ですが、analysisの語源としては、「ばらばらにする」という意味があるそうです。analysisの日本語訳である「分析」も、「分ける」「析(さ)く」という意味の漢字から成り立っていますから、analysisと同じ意味合いですね。近代以降の還元主義的な考え方によれば、「分ける」ことはすなわち「理解する」ことにつながります。分解することにより、ものごとを理解しようというのがanalysisの言葉的な意味になります。 近代の科学では、対象の理解のために観察や実験といった方法が採られてきました。そこには、データが必須です。対象を分解し、データを比較することがスタートです。比較対象をできるだけシンプルにすることが研究の基本的な態度ですが、対象が複雑になったり大規模になったりすると、多くのデータが必要になります。そのため、複雑で多様なデータから情報を引き出し、ものごとを理解するための技術が発展しました。それがアナリティクスです。analyticsを直訳すると「分析学」であり、analysisに関する知識や技術の総称になります。SASのWebページには次のように書いています。 アナリティクスは包括的かつ多面的な分野であり、記録されたデータに潜む有意義なパターンや知識を発見するために、数学、統計学、予測モデリング、機械学習などの手法を活用します。 SASはアナリティクスのソフトウェアとサービスを提供している企業ですが、単なる「技術」を売っているとは考えていません。人間が対象を理解しようとしているのは、その理解から利益を得たいからです。今日、世界中の組織でアナリティクスやデータサイエンスが活用されているのは、それが組織の役に立つからです。SASにはこんな言葉があります。 Data doesn’t drive your organization, Decisions do. データは組織を駆動しない。意識決定が駆動する。 アナリティクスはデータを分析し、インサイトを得るための技術ですが、それが人間の意思決定につながらない限りは組織の利益にはなりません。 意思決定をしてみよう 「意思決定」と言っても、べつに特別なことではありません。我々は日常的に意思決定をしています。少し例を上げてみましょう。 今日、傘を持っていくか? 週末のイベントに参加するか?(コロナ禍) ワクチンを接種するか? 運動会のリレーのクラス代表を誰にするか? どの授業に登録するか? みなさんは、これらの課題に対し、どのように意思決定をしますか? 傘を持っていくかどうかの判断は、天気予報を見て決めるでしょう。天気予報は、気象庁や気象予報士が過去のデータと現在の観測データ(衛星や気象観測所、各種センサーなど)を用いて未来の天気を予測しています。週末のイベントに参加するかどうかは、新型コロナウイルスの感染者の動向を見て決めるでしょう。ニュースやWebサイトでは、感染者の遷移がわかりやすく可視化されています。ワクチンを接種するかどうかは、ワクチンに効果があるかどうか、副反応が許容できる範囲かどうかを考慮して決めるでしょう。ワクチンの効果は、厳密にデータと統計学によって検証されます。運動会のリレーのクラス代表は、体育の授業の50m走のタイムを見て決めると納得しやすいです。1回だけだと「たまたま」かもしれないので、何回かの平均タイムを比較するかもしれません。どの授業に登録するかは、学部・学科の履修ガイドラインもさることながら、過去にその授業を受けた先輩が残したデータを参考にするでしょう(筆者の学生時代は、単位の取りやすさがA-Dにランク付けされたリストが出回っていました)。このように、みなさんは日常的に意思決定をしていますし、そこではデータを役立てていることが多いことがわかります。 みなさんのなかには、データサイエンティストを目指している人もいるかもしれません。組織のなかでアナリティクスを活用するには、この意思決定をどのように支援するかを考えることが重要です。データを取得し、分析し、その結果を意思決定者であるユーザーに提示するサービスを設計する必要があります。この「ユーザー」はアナリティクス・ソフトウェアのユーザーではなく、意思決定サービスのユーザーという意味です。データサイエンティストは、データがあるからとりあえず分析してみるのではなく、ユーザーが意思決定をする際の課題をいかにデータ分析により手助けするかをプランすることも役割の一つになります。 4つのアナリティクス ガートナーによると、アナリティクスは、データ分析をしてから意思決定にいたるまで、どの程度人間が介在するかによって4つのレベルに分けられます。 記述的アナリティクス … 過去に何が起こったか、いま何が起こっているかを知る。データの集計や平均値などの統計量の計算、グラフを用いた可視化など。 診断的アナリティクス … 事象なぜ起こったかを分析する。要因分析・効果検証・統計的因果推論など。 予測的アナリティクス … 未知の事象を過去のデータや入手できる情報から予測する。統計モデル・機械学習モデルを活用。 指示的アナリティクス … 次に何をすべきかを指し示す。数理最適化の手法を活用。 例えば、上記の意思決定の例であれば、イベントへの参加を検討するためにコロナ感染者の推移をグラフで見たり、リレーのクラス代表者を50m走のタイムで決めたりするのは、記述的アナリティクスに該当します。情報を解釈して判断する大部分を意思決定者自身が担います。ワクチンの効果を検証するのは診断的アナリティクスです。ランダム化比較実験や統計的因果推論の手法を用います(次回以降で解説します)。天気予報は、予測的アナリティクスに当たります。過去のデータと現在の観測情報から未来の天気を予測します。指示的アナリティクスでは、例えば最適な配送経路を計算するのに数理最適化の手法を用います。 次回以降は、これら4つのアナリティクスを詳しく見ていきましょう。

Analytics | Learn SAS | Students & Educators
まず「データリテラシー」からはじめよう

社会でのデータ活用が進むにつれ、それを推進する人材の必要性が増しています。データ活用人材、アナリティクス人材、データサイエンティスト、呼び方や役割はさまざまですが、そのスキルの根底にあるのは、「データリテラシー」です。データリテラシーとは、世界で起こっているさまざまなことを理解するために、データと対話できることを指します。データの有用性を見極め、信頼性を問い、意味を見出し、その洞察を意思決定に役立て、洞察を他者に伝えることができる一連のスキルです。内閣府、文部科学省、経済産業省は、大学における「リテラシーレベル」の数理・データサイエンス・AI教育プログラムについて、認定制度をはじめようとしています。 SASは、学生向けにデータサイエンスを学べる SAS Skill Builder for Students を無料で提供しています。Skill Builder for Students の e-Learning のなかに、データサイエンスを学ぶ最初のコースとして、Data Literacy Essential があります。このコースでは、身近な例を取り上げ、段階を踏んでわかりやすくデータリテラシーについて学ぶことができます。 SASは、アナリティクスが個人や組織の意思決定のために活用されるものであることを意識し、製品やサービスを展開しています。この Data Literacy Essential のコースでも、意思決定の際にデータとどう向き合えばよいのか、その理解のためのファースト・ステップを提供します。よく統計学の初級コースで、「まず平均や分散を計算してみましょう」という教材がありますが、実は、それ以前に理解すべきことがあります。なぜデータを見る必要があるのか、どのようにデータを集めるのか、そのデータはどういう性質を持っているのか、という疑問と、それらを知ろうとする姿勢が必要です。 このコースは6つのモジュールで構成されます。 Why Data Literacy Matters ... WebやSNSなどで出会うさまざまなデータを例にデータリテラシーの重要性を学びます。 Data Literacy Practices ... 商品の購入を例にデータリテラシーの実践を学びます。 Identifying Reliable Data ... ある家族の新型コロナ感染予防の取り組みを例に信頼できるデータの収集について学びます。 Discovering the Meaning of Data ... 新型コロナの影響を受けたビジネスを例にデータから知見をどのように得られるのかを学びます。 Making Data-informed Decisions ...

Advanced Analytics | Analytics | Artificial Intelligence | Learn SAS | Students & Educators
Jos van Dongen 0
SAS Energy Game: Serious gaming maakt leren leuk

Inzicht krijgen in de kracht van analytics én leren omgaan met analytische software. En dat terwijl je gewoon een spel speelt. Dat is de SAS Energy Game. Inmiddels hebben al honderden studenten het spel gespeeld en daarmee hun analytische vaardigheden versterkt. Meer mensen kennis laten maken met analytics Data is

Analytics
Arthur de Crook 0
67220

SAS Summercamp brings innovations to next level The words curious, passionate, accountable and authentic best describe the atmosphere around the SAS office in Huizen during the SAS D[N]A Lab Summercamp 2022. From 16-19 August, the Dutch SAS office was transformed into a real Summercamp, including an actual campsite. During this

Analytics
製造業における DX と SQC

こんにちは、SAS Japan の西井です。本ブログにアクセス頂きありがとうございます。私は 2019 年に SAS に入社しましたが、それまでは国内の自動車部品メーカーにて様々な化学素材や工業部材の基礎研究・量産化開発に 10 年以上携わって来ました。SAS 入社後は、国内の製造業のお客様へ業務課題解決のためのデータ分析のソリューション(ソフトウェアやサービス)を提供する仕事に従事しています。今回はそれらの経験を通じて感じた事をタイトルのブログ記事として記しました。製造業での DX 推進の一つのヒントになれば幸いです。 背景 近年、製造業におけるデジタルトランスフォーメーション (DX) が大きな注目を集めています。DX とは一般的に、データやデジタル技術を活用して、業務プロセスを変革し競争優位を確保していくことと定義されています (参照 1) 。 製造業で DX が求められる背景には、ビジネス環境の変化による製品競争力低下への強い危機感があると考えています。日本の製造業はこれまで、各社のコア技術を元にした高度な品質を有する製品群によって、長期にわたり競争力を維持して来ました。しかし2000年代以降、新興国の参入やサプライチェーンのグローバル化など様々なビジネス環境の変化により、その優勢性に陰りが見えるようになりました (参照 2) 。競争優位の再構築に向けて、単独の製品性能による価値だけでなく、バリューチェーンを横断する形での付加価値創出、例えばロジスティックの最適化や顧客サービスの高度化など、いわゆるビジネスモデルの変革へ向けた施策が多くの企業で試みられるようになりました。その際、重要な要素の一つがデジタル技術の活用であり、DX の概念と重なったため、最近より強く注目されるようになって来たと認識しています。 本ブログのスコープ 弊社 SAS Japan は国内の製造業のお客様へ分析ソフトやサービスの提供を行い、業務課題の解決や高度化への変革、DX 推進のサポートを進めております。その中でしばしばお客様から、このような DX の総論を聞いても、実感がわかない、自分の業務とどう関連するのかわからないというご意見をしばしば頂くことがあります。特に競争優位の中核である品質管理に関わっている技術者の方々にとっては、製造データを用いた生産・品質管理活動はかねてから実施しており、今後どのような変化が必要で具体的に何に着手して良いか理解しかねていると感じています。今回、そのような現場技術者の方や企業の DX 推進担当者の方々を対象に、一つの切り口の例として、これまで品質管理手法として長らく活用され今も活躍している SQC (Statical Quality Control: 統計的品質管理) にフォーカスを当て、どのように DX へ組み込み発展させることが可能か、提言したいと思います。 SQC とは SQC は、QC七つ道具などの可視化手法 (管理図など、参照

Advanced Analytics | Analytics | Artificial Intelligence
Dwijendra Dwivedi 0
7 common pitfalls to avoid when creating business value from AI

Artificial intelligence (AI) is causing a digital transformation that is changing businesses’ operations. It is likely to bring a sea change compared to the Industrial Revolution. Many challenges with AI are technical, but most failures occur because of poor strategy and execution. Fortunately, there are some steps you can take

Analytics | Learn SAS | Students & Educators
見習いデータサイエンティストが思うキャリアの選び方 【アナリティクスを活用するキャリア: SAS Japan】

アカデミア向けにアナリティクス・データサイエンスのキャリアを紹介するイベント「SAS アナリティクス・キャリアシンポジウム」において、SAS Institute Japan 株式会社 コンサルティングサービス統括本部のクラウス 舞恵瑠 氏が講演しました。本イベントは、「データサイエンティストになりたい」と考える学生が業務内容やキャリアをイメージできるようになることを目指し、2021年12月22日(水)に開催されました。前回の記事はこちら。 「大学院のときに学会に参加し、『もっと数学をやりたい』と気づいたときには、すでに就活が終わっていました…」と振り返るクラウス氏は、大学院ではオペレーションズ・リサーチを専攻していました。「やりたいことが分からないから」という理由でコンサルティングファームに就職し、システムの導入支援の業務につきましたが、在学中に参加した学会で芽生えた「数理的な手法で問題解決をしてみたい」という思いが強くなり、SAS Japanへの転職を決意します。 クラウス氏がSASで携わっている直近のプロジェクトのテーマは、「不良債権回収業務の回収益向上」というものです。通常、債務の返済を督促するときは電話をかけますが、人によっては訴訟に発展してしまう可能性もあります。そこで、返済状況や債務者のタイプによって督促の方法を変更したり、場合によっては債務を減額する提案をするほうが長期的には回収額が向上する場合があったりします。どのような督促・回収方法を取るのがよいのか、回収担当者の意思決定を支援するために、強化学習や最適化手法といったデータ分析を活用します。 「一般的なプロジェクトには業務フローがありますが、それぞれのフェーズにおいて必要となるスキルや知識は異なります」とクラウス氏は言います。プロジェクトのフェーズは①現状分析/効果検証、②要件定義、③設計/開発/テスト、④導入支援、⑤本番稼働、の5つに分けられます。それぞれのフェーズにおいて、①分析とドメイン知識、②コミュニケーション、③エンジニアリング、④コミュニケーション、⑤エンジニアリングのスキルが重要になります。 分析スキルのベースには線形代数、微分、統計などの数学的な力があり、それを活用するためにSASやPythonなどのツールやプログラミングのスキルがあります。業界やクライアントの業務に関する知識であるドメイン知識は、クラウス氏によると「非常に重要なもの」ですが、一方で「学生の間に身につけることは難しい」ものです。コミュニケーション・スキルは、クライアントの課題を明確にするためにヒアリングを実施し、また、プランや結果をクライアントにフィードバックするための資料を作成し、わかりやすく説明するためのスキルです。エンジニアリング・スキルは、参画するプロジェクトにもよりますが、GithubやSQLなどのテクノロジーを扱う技術が求められる傾向にあります。このうち、分析スキルは大学の授業などを通して、コミュニケーション・スキルはゼミなどを通して学生のうちに身につけることができそうです。 「これらのスキルをすべて伸ばしていくことはもちろん望ましいですが、私の現在の課題としては、より高度な分析スキルを身につけることです。そのためには、独学、勉強会、YouTubeなどさまざまな勉強法がありますが、一番大切なのは実務経験だと考えています」とクラウス氏は述べます。「学生にとっては実務経験を得ることは難しいですが、就職したあとに積極的に実務に携わり、経験を通してスキルを向上させていく意欲が大切です」と学生にエールを送りました。

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (6) – センサデータの品質を向上させる7つのポイント(後編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題 これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、「センサデータの品質を向上させる7つのポイント」について(前編)と(中編)の2回に分けてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 今回の後編では下記の⑥~⑦について御説明します。  図1. センサデータの品質を向上させる7つのポイント ⑥データレイクに蓄積すべきデータの選択(特徴量抽出) これまでの記事で、課題解決にマッチした高品質なセンサデータを収集することが重要だと述べてきましたが、他にも重要なポイントがあります。データレイクに蓄積すべきデータをどのように選択するのかが、昨今、課題となっています。  理由としては、AIモデル開発と更新のために、ある程度の生データ保存が必要となるからです。 この問題は、PoC段階では大きな問題になりません。PoCと称して大量にデータを取って専門の担当者が解析するからです。問題はPoC後の現場での運用です。 図2. 関連データ/センサ/特徴量の戦略的選択  それはなぜでしょうか? 各種センサが作り出すデータ量は非常に大きく、センサによっては毎分1 GB 以上のデータを生成してしまい、通信ネットワークの負荷の問題や、クラウド上でのデータ保存のコストといった現実的な問題が見えてくるためです。 例えば、図1の右側の表に示すように、サーモグラフィは動画像のため、1分間で1GB以上のデータを生成します。この場合、従量課金/ネットワークトラフィック減への対応が必要となります。温度センサ等のデータ量は、数個であれば小容量ですが、数百個もセンサを使用するケースですと、1分間に数MBにもなります。このようなデータをクラウドへ転送し続ける必要があるのでしょうか? また、高額なセンサを減らすために、できるだけセンサの数を絞りたいという要望も出てきます。これがいわゆるデータ選択(特徴量抽出)をどうたらいのかという課題の本質であり、データ分析上、特徴量の選定が重要だという理由とは異なります。では一体、どんなデータが本当に必要なのか、またデータ量を減らす時にどのような形でエッジコンピューティングを活用すべきなのでしょうか? この技術的な見解は、今後、ブログにて紹介させて頂きたいと思っておりますが、ITとOTの両方の視点から検討する必要があります。 キーワードとしてはプロ同士の意見交換です。 ⑦プロ同士の意見交換が鍵となる ここまで、センサデータの品質がデータ分析に与える影響について、データ分析企業の視点で述べてきましたが、どの注意点も専門知識と経験を要するものばかりです。つまり、成功の鍵は、プロ同士の意見交換だと言えます(図3)。もしくは「業界を超えたコラボレーションの必要性」、「ITとOTとの融合が鍵になる」と表現しても良いかもしれません。 特に現場の熟練者との協業は必須となります。現場の熟練者から伺いたい事としては、測定対象物の詳細、製造プロセスや作業工程、異常状態の詳細、また、どういうメカニズムで異常が起こるのか情報交換させて頂くことが重要です。そして、それがどれだけ困ることなのかをプロジェクトチーム内で意見交換をして頂くことが重要だと言えます。そして、センサデータ収集からデータ分析までを広く見渡した上で、AIを用いたセンサデータ分析システムを構築していくことが成功への近道だと筆者は考えています。難しく感じられる方もおられると思いますが、このプロ同士の意見交換に関しては、日本人エンジニアが得意とする高度な擦り合わせ文化が活かせると信じております。 図3. プロ同士の意見交換が大事  以上、センサデータの品質を向上させる7つのポイントを、3回に分けて紹介致しました。気になる点がございましたら、弊社までお問い合わせ下さい! 前回のブログ

Analytics | Learn SAS | Students & Educators
Gaetano Varriale 0
Collaboration is key to developing data specialists in Italy

"Companies across pharma and medtech need talented people to cover the range of data-related challenges." Paolo Morelli, Executive VP, Biometrics of Alira Health Paolo Morelli, Executive Vice President, Biometrics of Alira Health, tells us how he developed a relationship between the University of Bologna and industry-leading companies – and what

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (5) – センサデータの品質を向上させる7つのポイント(中編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 記事の振り返り: 自覚症状が無いセンサデータの品質問題  これまで「自覚症状が無いセンサデータの品質問題」をテーマとし、前回は「センサデータの品質を向上させる7つのポイント(前編)」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者が気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、「センサデータの品質を向上させる7つのポイント」について、今回の中編では下記の④~⑤まで御説明します。  図1. センサデータの品質を向上させる7つのポイント ④センサの設置方法  センサは種類に応じて必ずメーカが推奨する設置方法が決められています。図2は圧電型加速度センサの設置方法と注意点であり、加速度センサメーカから提供されている一般的な公開情報です。重要なのは、設置方法によっては必要なデータが得られないことです。例えば、計測可能な上限周波数は、プローブだと1 kHzが限界ですが、ネジ留めだと15 kHz近くまで測れます。これも筆者が経験した事例ですが、ユーザ様が自己流で両面テープを用いて加速度センサを貼り付けておられたために、振動が吸収されてしまい、正確な計測ができていなかったことがありました。これはさすがに、高度なデータ分析を実施する以前の問題でしたので、すぐに改善をお願いしました。 図2.  加速度センサの設置ミスによる振動データのロスト   ⑤データ収集装置の選定  データ収集装置自体の性能不足が問題になることがあります。これは盲点であり、自覚症状が出にくいものです。たとえ高精度なセンサを設置してデータ収集したとしても、適切なデータ収集装置を選定しなかったために、データの精度を低下させてしまうケースがあります。特に重要なのは、サンプリング周波数、分解能、同期計測の3つです(図3)。 図3. 適切な計測装置の使用が不可欠  サンプリング周波数に関しては、計測器の選定基準の一つとして必ずカタログ等に記載されており、また、近年はサンプリング周波数が不足しているデータ収集装置は稀なため、選定ミスの原因にはなりにくくなっています。しかし、分解能に関しては注意が必要です。例えば、加速度センサやマイクロフォンを用いた計測では、 24 bit分解能のデータ収集装置を使用するのが業界標準だが、16 bit分解能の装置を使用しているケースがあります(一般的なオシロスコープは8 bit分解能)。この場合、計測データに与える影響としては、波形再現性の悪化と微少な変化の取りこぼしが発生します。仮に機械学習を用いて異常検出をするとしたら、感度不足が起こる可能性があります(表1)。  表1. センサ計測ミスの原因とデータ分析に与える影響    極めて重要であるにもかかわらず、ほとんど意識されていないのが、同期計測です。各種センサデータ同士の時間的タイミングが取れていない場合は、厳密なデータ分析ができない場合があるからです。例えば、周期性のある回転機械や往復運動機械の異常検知を行う場合には、各種信号の立ち上がりタイミングや信号の発生サイクルが異常検知上、大きな意味を持つため、同期が取れていないデータでは異常検出が困難な場合あります(図4)。厳密には、計測装置の同期精度が、実施したいデータ分析用途に合っているかどうか判断する必要があります。高速動作をする精密機械の状態監視では、マイクロ秒レベルの同期精度が要求される場合もあり、一般的な工作機械ではミリ秒レベルで十分な場合があります。 図4.同期計測の重要性 データ収集装置の選定ミスにより、不具合の発見ができなかったという事例を、筆者は数件経験しています。例えば、高速印刷機の印刷ズレの原因分析に携わった時のことです。原因はベアリングのわずかな損傷で、それが原因で印刷ズレが発生していました。ですが、お客様のお持ちのデータ収集装置は、サンプリング周波数と分解能が低く、異常波形が検出できておりませんでした。そのため、筆者が持ち込んだデータ収集装置を使い原因分析は成功しました。加速度センサは最高のものでしたが、それを活かしきれるデータ収集装置の選定に問題があったという事例でした。 これまでの記事で、センサデータの品質を向上させる7つのポイントのうち5つを紹介してきました。 残り2つのポイントは、後編にて御説明します。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (4) – センサデータの品質を向上させる7つのポイント(前編)

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 前回の振り返り: 結果が出ないPoC(Proof of Concept:概念実証)  前回の記事では「自覚症状が無いセンサデータの品質問題」についてお話ししました。生産ラインのDXのために、センサデータを用いてデータ分析をしているのだが、思うような結果が得られていないというケースが市場で発生していることをお伝えし、その原因の一つとして、分析対象となるセンサデータ自体の品質問題があることをお伝えしました。 この問題は関係者の自覚症状もないため気付きにくく、対処方法も専門知識と経験が必要となります。 そこで、今回から前編/中編/後編の3回に分けて、「センサデータの品質を向上させる7つのポイント」について御説明します。 センサデータの品質を向上させる7つのポイント  現場では正確なセンサデータ収集(計測)を行っているつもりでも、気付かずに失敗しているケースが数多く存在していることに注意して頂きたいです。これは、計測ミスしたデータをいくら解析しても、良い結果は得られないからです。このような計測ミスを防ぐためのポイントは以下の7つだと言えます。 ※本記事では、上記の①~③まで御説明します。 ① 異常状態の発生メカニズムの理解(測定対象物の理解) この異常状態の発生メカニズムの理解は、測定対象物の理解を深めることだと言い換えることもできます。 いくつか例をあげてみます。ポンプのような回転機械の軸受けの不具合は異常振動として現れ、その結果として異音が発生します。また、音響機器はスピーカの取り付け不具合により、ビビリ音という異音が現れます。そして、プレス機のような往復運動機械の場合は、往復周期がぶれることにより、生産品の加工精度にバラツキが生じることがあります。さらに、射出成形機の場合は、材料の注入圧力の時間的変化にバラツキが生じた場合にうまく成形できない場合があります。 このように、測定対象物の異常状態が、なぜ起きるのかを物理的な観点から把握することが第1ステップとなります。 ところがこれが意外と難しいため、解決策としては、異常状態を把握している可能性の高い、現場の熟練オペレータなどからの情報収集が重要になります。 ② センサの選択(取得データの選定) よくあるミスとしては、センサの選択ミス、いわゆる取得データの選定ミスがあげられます。原因の一つは、上述の「①異常状態の発生メカニズム」が事前に理解できておらず、適切なセンサ選定ができなかったことに起因しています。例えば、回転機械の軸受けの不具合は異常振動として現れるため、異常検知のためには加速度センサを用いて振動データを取得することがベストだと言えます。また、音響機器のスピーカの取り付け不具合によるビビリ音の検出にはマイクロフォンを用いた音響計測が適切だと考えられます。 実はセンサ選定が不要な場合もあります。例えば、機械の制御信号が外部出力されているようであれば、そのままデータ収集することも可能です。 他にも原因があります。それは、システム構築を担当しているシステムインテグレータ(SIer)の得意分野が影響しているケースがあります。実際、SIerが得意としていないセンサは選定候補に上がってこないケースがあります。表1は、状態監視のために使用される代表的なセンサをまとめたものです。センサの種類によっては専門メーカや専門のSIerがいるものもあり、中には高性能な計測器が必要とされるセンサもあります。これは筆者が経験したことですが、製造装置の状態監視の際に、電流を使った異常検知の方が適切だと思われるケースがありました。ですがそこでは加速度センサが使用されていました。理由は業者が得意とするセンサ計測領域に偏りがあったことと、特に明確な理由がないまま、加速度センサが選択されていた状況でした。無論、生データには異常信号が弱く含まれており、データ分析をしても良い結果が得られていませんでした。そのため、筆者はセンサの変更を進言しました。 表1.状態監視に使用される代表的なセンサ ③ センサの取付け位置 センサの取付け位置も重要です。例として生産品の品質管理と製造装置の異常検知の例をあげてみます。機械はローラ機械である。図1左側の写真は、加速度センサを用いた軸受けのモニタリングであり、X、Y、Z軸に加速度センサが取り付けられている。この例は正しく設置されている例である。  医者の診断に例えれば、心臓の診断のために心音を聴こうとする医者は、どこに聴診器をあてるでしょうか? もちろん胸ですよね? 足に聴診器をあてて心音を聴こうとするお医者様がいたらかなり心配になりますよね? このような、あり得ない状況がセンサの取付け位置のミスとして起こっている場合があります。このような事態を防ぐには、「なぜそのセンサを設置するのですか?」とSIerに質問するなり、自問自答してみると良いと思います。また、「設置するセンサの数、取り付け方向はどうすべきか?」という問いに関しても明確な理由を持っておきたいですね。             図1.生産品の品質管理と製造装置の異常検知(ローラ機械の例) 以上、センサデータの品質を向上させる7つのポイントのうち3つを紹介しました。 次回は、④~⑤について御紹介します。 前回のブログ  次回に続く

Analytics | Data for Good | Learn SAS | Programming Tips
0
CData JDBC Driverを利用したSNS・ファイルストレージサービスとの連携のご紹介

SAS ViyaではCData JDBC Driverを使って下記のソーシャルメディア・ファイルストレージサービスにシームレスにかつ、素早く連結できます。 ・Facebook ・Google Analytics ・Google Drive ・Microsoft OneDrive ・Odata ・Twitter ・YouTube Analytics 本日はCData JDBCドライバーを使ってTwitterと連携し、「天気」に関するツイートを取得してみたいと思います。順番通り説明しますので、最後までお読みいただき、皆さんも是非ご活用ください。   1. Twitter API利用申請 Twitter Developer PlatformにてTwitter APIの利用申請を行います。申請にあたり、名前と住んでいる地域、利用目的などの情報を提供する必要がありますので、事前に用意しておいてください。また、利用申請の承認はTwitter側で数日かかる場合がありますのでご了承ください。 Twitter APIの利用申請が終わったら、申請完了のメールが届きます。 また、申請の検討が終わり、Twitter APIが利用できる状態になりましたら、「Account Application Approved」というメールが届きます。 2. CData Twitter JDBC Driverインストール インストールにはSASの契約とは別途、CData社との契約が必要ですが、30日間トライアルで使うことも可能ですので、ご紹介します。 まず、CData Twitter JDBC Driverインストールページにアクセスします。 次に、Downloadクリックします。 Download Trialをクリックします。 適切なOSを選択してDownloadをクリックします。今回はWindowsを選択しました。 ダウンロードされたTwitterJDBCDriver.exeファイルを開き、画面に表示されるステップに従ってインストールを完了します。   3. Connection String生成

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (3) – 自覚症状が無いセンサデータの品質問題

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 今回から、「自覚症状が無いセンサデータの品質問題」に関連した話題をお伝えしていきます。  結果が出ないPoC(Proof of Concept:概念実証)  SASは世界各国に支社を持ち、製造業DXの実現に向けた数多くのデータ分析案件を取り扱っています。 よく頂く御相談内容としては、生産品の品質管理と設備保全系に関連するデータ分析システムの導入検討です。(図1)    図1. 生産ライン向けDXとしてよくある御相談   ところが、PoCとしてセンサデータを用いてデータ分析をしているが、思うような結果が得られていないというケースが市場で発生しています。多くの方がデータ分析手法に問題があるのではないかと考え、データ分析のスペシャリストである弊社に御連絡を頂きます。たしかに分析手法の問題もあり、原因は様々ですが、意外と盲点になっているのが分析対象となるセンサデータ自体の品質問題です。  センサデータの品質問題とは何か?  データ分析はデータ収集から始まります。そして、そのデータの質が分析結果に影響を与えることは容易に想像できます。図2はセンサデータ分析システムの構築の流れを示しています。システム構築は、データ収集からスタートし、データ蓄積、そしてデータ分析という順番で実施され、手動でデータ分析の結果が出るようになった段階で自動化するという流れが一般的です。  図2. センサデータ分析システムの構築の流れ   図3は、センサデータの分析の際にAIの導入を意識して描いたものです。流れとしては、経営上の目標設定から始まり、データ取得、特徴量抽出/次元削減、そしてモデル作成へと進んでいきます。ここで皆様に質問させて頂きたいのは、どの工程が一番重要なのかということです。無論、どの工程も専門家の知見が必要であり、重要かつ難易度が高いのは当然ですが、最も重要なのは前半のデータ取得と特徴量抽出だと、あえて強調します。言い換えますと、モデル作成に使用されるセンサデータの品質(精度)が重要だということです。当然ではありますが、センサデータの質が悪い場合、データ分析(作成するモデルの精度)に影響が出てしまうためです。 医者の診断に例えれば、検査データが間違っていたら間違った診断を下してしまうのと一緒であり、センサデータの品質は極めて重要だと言えます。  図3. AIを用いたセンサデータ分析システムの開発の流れ 自覚症状が無いセンサデータの品質問題  この問題の恐ろしい点は、システム開発に携わっている関係者の皆様にとって自覚症状が表れない場合が多いことです。 そもそも、データ分析の結果が出ない原因が、上述のセンサデータの質に関係していることを、どうやって判断すれば良いのでしょうか? 当然、他の原因も考えられます。   先日、お医者様と健康診断の検査結果のお話をした際に気がついたのですが、お医者様は検査データの意味や限界、誤差要因をよく御存知のようでした。そして総合的に私の健康状態を判断しておられるようでした。思わず、その秘密を知りたいと思い質問してしまったのですが、お医者様の回答は「過去の事例と経験即かなぁ~~??」と、お答えいただきました。  ということで、次回以降、私の経験即に基づいたチェックポイントを御紹介していきます。  前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (2) - 生産ラインにおけるAIを用いた状態監視の種類

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) と Operational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 はい、今回は、「生産ラインにおけるAIを用いた状態監視の種類」について解説します。 図1に示した通り、種類としては4つに大別されます。 どれを実現したいのかで、取得すべきセンサデータの種類や、データ分析システムの構築難易度が変わってきます。 読者の皆様は、どれを実現したいとお考えでしょうか? 図1.生産ラインにおけるAIを用いた状態監視の種類は4つある 1つ目が異常検知です  これは生産品の品質異常や生産ラインの設備機械の異常を捉えるものであり、学術的には「教師なし学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意する必要がないため、不具合データの取得が困難な製造業の現場において有効となります。例えば、正常時の各種センサデータを基準とし、どれだけ正常状態から離れたかで、異常を検出する方法です。 2つ目は原因診断です これは異常発生後に、何が原因なのか特定するものであり、学術的には「教師あり学習」と呼ばれる手法を用います。この場合、異常時のデータを予め用意しておく必要があります。 原因診断が必要とされる理由としては、対処方法の検討をつけるためです。 製造装置であれば、点検箇所や分解すべき箇所を特定することにより、分解コストや部品交換コストを抑えることができます。 これは大型機械の場合、特に重要であり、この原因診断は「精密診断」とも呼ばれ、まさに職人技が要求される分野です。 3つ目が品質/寿命予測です これは各種データから、生産品の品質を予測したり、稼働中の設備や部品が、あとどれくらい使用できるか日数を予測するものです。 例えば、生産品の品質予測が可能になると、抜き取り検査の精度が向上し、ランダムにサンプル取得をするのではなく、品質上懸念がありそうなものをサンプルして効率良く評価できるようになります。 また、設備や部品の寿命予測が可能になれば、高額な部品をできるだけ長く使用することができますし、メンテナンス日程を戦略的に決めることも可能になります。 4つ目がパラメータ最適化です これは、期待した品質で生産するためには、どのような製造環境や材料構成が必要なのか、また、どのように製造装置を制御したらよいのか決定することができます。 図1に示したデータ活用の流れは、人間の健康診断と全く同じであり、1番から4番まで順番に実施する必要があり、飛び越えることはできません。 医療に例えますと、1番の「異常検知」は、正常時との変化を検出するものであり、いわば定期健康診断に相当するものです。 2番の「原因診断」は、定期健康診断で早期発見された異常を、さらに掘り下げて精密検査を行うものです。 3番の「品質/寿命予測」に関しては、医学でも同様であるが、これまでの長年にわたるデータが揃うことにより、治癒率予測が可能になります。 4番の「パラメータ最適化」は、健康で過ごすための予防方法だと言えます(図2)。そして、豊かな人生を過ごすために、どなたも4番の予防までを期待されておられると思います。 図2. 医療診断の流れと、生産ラインにおける品質管理/設備状態監視の流れはよく似ている 生産ラインでも同様です。最後の4番まで実現できれば、ビジネス上の費用対効果(ROI)は最大となります。 それには、分析に必要な各種データを準備する必要があり、その質も重要になります。 しかしながら現実問題として、いきなり4番から実現することはできないため、4番のパラメータ最適化の実現をゴールとしながら、1番から順番に実現していく必要があることを御理解ください。また、医学でも同様のことがいえるかと思いますが、生産ラインにおける状態監視対象物によっては、1番の異常検知が技術的な限界となり、2番以降に進めない場合もあります。 この見極めも重要となってきますが、この点は本ブログのテーマとして別途取り扱いたいと思います。 前回のブログ  次回に続く

Analytics | Internet of Things
0
製造業DXにおけるITとOTとの融合 (1) - なぜ医者の診断に例えて学ぶと良いのか?

医者の診断に例えて学ぶ AIを用いたセンサデータ分析システムに関するよくある誤解について 製造業で盛んに導入されているセンサ。 そのセンサデータを分析してビジネスインパクトのある結果を出すには、どのようにしたら良いのでしょうか? データ分析を成功させるためには、様々な要素が考えられますが、ここではセンサデータの質に注目したいと思います。 いくら高度なデータ分析手法を用いても、分析対象のセンサデータが正しく取得できていない場合は、結果が出ないことは容易に想像できますが、あまり議論されることはありません。 これは、センサ計測とデータ分析の両方を視野に入れた幅広いノウハウが必要となり、Information Technology (IT) とOperational Technology (OT)との融合という課題に行き着くためです。 本ブログでは、このマニアックな話題を、医者の診断に例えながら、わかりやすく解説していきます。 ------ はい、本日は 「なぜ医者の診断に例えて学ぶと良いのか?」 をテーマにお話しします。 近年、製造業DX、またはインダストリアルIoTと呼ばれるトレンドにより、AIを用いたセンサデータの分析が流行しています。 例えば、 ・ 製造装置の故障予測 (設備状態監視) ・ 生産品の不具合検出 (生産ラインの品質管理) が人気の用途です。 背景としては、熟練者のリタイヤを見越して、彼らが持つ暗黙知の形式知化が必要とされていることや、熟練者ですら見つけられない不具合を検出することで更なる品質向上を実現したいという考えが背景にあります。 そのため、データ分析のリーディングカンパニーである弊社には、世界各国において、センサデータの分析に関する御相談が数多くやってまいります。 それと同時に様々な誤解が生じていることがわかってまいりました。 ところが、数多くのお客様とお話をしていくと、多くの誤解や勘違いが存在することがわかってきました。 例えば、 分析アルゴリズムに関して、熱心に調査されているお客様、がおられます。 ごく普通のニーズだと思いますが、お話を伺うとこんな感じになることがあります。 監視対象物や起こっている異常状態が不明 データは持っておらず、機械学習等の分析手法を調査されているご様子であったり、監視対象となる設備機械や生産品が決まっていないというお客様です。 要は情報収集段階だということです。この場合、優秀なデータサイエンティストでも明確な回答はできず、お客様もなかなか納得されない状況が生まれます。 この状況は、医療で例えるなら、病気にもなっていないのに病院に行き、治療方法を熱心にお医者様に相談している状況と同じではないでしょうか? この例え話をさせて頂くと、すぐに状況を御納得頂けます。 データ分析をしても結果が出ない 2017年頃にIoTが流行った際に、まずはセンサで計測してみましょうということで「スタートアップキット」なるものが流行ったことがあります。 この名残で、分析しても結果がでなかったという苦い経験をされたお客様が数多くおられたようです。 投資もしましたし、会社組織としても困りますよね。そこで弊社に相談が来るわけです。 もちろん分析手法が原因である場合もありますが、実は問題の大半は、センサの選定ミスや、取付けミス、生データの取得方法などに関係しています。 この状況は、医療で例えるなら、心臓の病気を見つけるのに、聴診器を足に当てて心音を聞いているような状況が起こっているということです。また、ウィルス性の病気を聴診器で見つけようとしているようなケースも見うけられます。 これでは絶対に病気は見つけられませんよね? 医療に例えれば、あり得ない状況ではありますが、センサデータ分析の世界では、頻発している問題です。 正直、驚きではありますが事実です。 私はこのような状況を、非常にもったいないと感じています。 そのため、本ブログを通して、AIを用いたセンサデータ分析システムに関して生じている様々な誤解について、医者の診断に例えながら、わかりやすく御紹介していけたらと思っております。 その理由ですが、医療診断と、製造業系データの分析の流れは似ているからです(図1)。また、医療診断は、多くの皆様が実体験をお持ちですので、例え話を通して、言われてみればそうだなという感覚を持って頂きやすいのではないかと考えております。 図1. 医療診断の流れと、生産ラインでのデータ分析の流れはよく似ている 今回は、医者の診断に例えると、色々と見えてきますというお話をさせて頂きましたが、次回からは、よくある誤解に関して、次々に御紹介していきます。 テーマとしては、こんな感じの物を予定しています。 ・ 生産ラインにおけるAIを用いたデータ分析の種類について ・ 無症状であり、異常検出が甘くなる原因となる「センサの選択ミス(取得データの選定ミス)」 ・ 無症状であり、異常検出が甘くなる原因となる「センサの設置方法のミス」 ・ 無症状であり、異常検出が甘くなる原因となる「取得データの質が悪いケース」 ・ 患者に寄り添う現場スタッフとのコラボの必要性 ・ 病名は同じでも、症状が微妙に異なるケースへの対処 など 次回に続く

Analytics | Artificial Intelligence
Mark Lambrecht 0
Vijf uitdagingen in de zorg waar analytics en AI in 2022 bij kunnen helpen

Geen sector die de afgelopen twee jaar zo hard onder druk stond als de gezondheidszorg. En ook nu het einde van de pandemie in zicht lijkt, zullen veel uitdagingen rond Healthcare en Life Sciences niet verdwijnen. Gelukkig investeren zowel overheden als ziekenhuizen en farmaceutische bedrijven fors in data en analytics

Back to Top