Search Results: simulation (470)

Data Management
Jim Harris 0
Data steward is a tough role to play

In my previous post I explained that even if your organization does not have anyone with data steward as their official job title, data stewardship plays a crucial role in data governance and data quality. Let’s assume that this has inspired you to formally make data steward an official job title. How

Rick Wicklin 0
Resampling and permutation tests in SAS

My colleagues at the SAS & R blog recently posted an example of how to program a permutation test in SAS and R. Their SAS implementation used Base SAS and was "relatively cumbersome" (their words) when compared with the R code. In today's post I implement the permutation test in

Rick Wicklin 0
Fat-tailed and long-tailed distributions

The tail of a probability distribution is an important notion in probability and statistics, but did you know that there is not a rigorous definition for the "tail"? The term is primarily used intuitively to mean the part of a distribution that is far from the distribution's peak or center.

Leo Sadovy 0
Activity-Based Business Process Reengineering

I want to use SAS’ recent announcement of our Cost and Profitability Management solution as an opportunity to highlight an often overlooked but valuable application of activity-based costing: business process reengineering.   But first, just a brief description of Cost and Profitability Management’s new breakthrough capability:  In-memory model calculation. SAS’ decision

Rick Wicklin 0
Simulating data for a logistic regression model

In my book Simulating Data with SAS, I show how to use the SAS DATA step to simulate data from a logistic regression model. Recently there have been discussions on the SAS/IML Support Community about simulating logistic data by using the SAS/IML language. This article describes how to efficiently simulate

Rick Wicklin 0
Never multiply with a large diagonal matrix

I love working with SAS Technical Support because I get to see real problems that SAS customers face as they use SAS/IML software. The other day I advised a customer how to improve the efficiency of a computation that involved multiplying large matrices. In this article I describe an important

Analytics
Leo Sadovy 0
Agility and the Analytic Sandbox

Analytics gives us not just the ability but the imperative to separate our planning activities into two distinct segments – detailed planning that leads to budgets in support of execution, and high-level, analytic-enabled business/scenario planning. My critique of Control Towers in this blog last time led me not only to

Rick Wicklin 0
Where's Rick at SAS Global Forum 2014?

Once again I'll be at SAS Global Forum this year. The 2014 location is Washington, D. C., so I am looking forward to greeting many friends in the government and consulting sectors. I always enjoy talking with SAS customers about statistics, simulations, matrix computations, and the SAS/IML product, so here's

Rick Wicklin 0
Sample with replacement in SAS

Randomly choosing a subset of elements is a fundamental operation in statistics and probability. Simple random sampling with replacement is used in bootstrap methods (where the technique is called resampling), permutation tests and simulation. Last week I showed how to use the SAMPLE function in SAS/IML software to sample with

1 11 12 13 14 15 16