
SAS Viya for Learners offers free access to AI and machine learning software for higher education teaching and learning, hosted in a new learning portal by SAS.
SAS Viya for Learners offers free access to AI and machine learning software for higher education teaching and learning, hosted in a new learning portal by SAS.
This blog post is based on the Code Snippets tutorial video in the free SAS® Viya® Enablement course from SAS Education. Keep reading to learn more about code snippets or check out the video to follow along with the tutorial in real-time. Has there ever been a block of code
At the end of my SAS Users blog post explaining how to install SAS Viya on the Azure Cloud for a SAS Hackathon in the Nordics, I promised to provide some technical background. I ended up with only one manual step by launching a shell script from a Linux machine
As word spreads that SAS integrates with open source technologies, people are beginning to explore how to connect, interact with, and use SAS in new ways. More and more users are examining the possibilities and with this comes questions like: How do I code A, integrate B, and accomplish C?
Recently, the North Carolina Human Trafficking Commission hosted a regional symposium to help strengthen North Carolina’s multidisciplinary response to human trafficking. One of the speakers shared an anecdote from a busy young woman with kids. She had returned home from work and was preparing for dinner; her young son wanted
Recently, you may have heard about the release of the new SAS Cloud. The platform allows fast access to data-science applications in the cloud! Running on the SAS Cloud and using the latest container technology, SAS Cloud eliminates the need to install, update, or maintain software or related infrastructure. SAS
You are a data scientist, in your office, doing data scientist-y things when, your manager's, manager's, manager makes an impossible request. She wants you take a raw data set from the stem cell research team, scrub the data, create and score models, and be ready to rescore when new data
Steht die moderne IT vor einer Herausforderung, greifen Verantwortliche immer öfter auf ein vermeintliches Allheilmittel zurück: die Migration von Lösungen in die Cloud. Doch ist diese Maßnahme tatsächlich die Universallösung? Nun, die Antwort darauf ist ein entschiedenes „Jein“. Analytics-as-a-Service und Analytics in der Cloud sind seit Längerem ein viel diskutiertes
Also celebrating is your bank's branch manager. She was skeptical when headquarters analysts equipped branches for "Cloud-based application using SAS" , saying it would speed up loan applications. But your quick, frictionless transaction proved them right.The bank's accountants are happy too. The new pay-as-you-go mode of using SAS software in
この記事はSAS Institute Japanが翻訳および編集したもので、もともとはXindian Longによって執筆されました。元記事はこちらです(英語)。 物体検出とは? 物体検出とはコンピューター・ビジョンの一分野であり、画像内に含まれる関心対象の物体を自動的に背景から区別して位置特定する手法です。例えば、図1に示す2つの画像では、いずれも前景に物体があります。左の画像では鳥が、右の画像では犬と人間が前景にあります。 「物体検出問題の解決」とは、「これらの物体をぴったりと囲むバウンディング・ボックスを配置し、それぞれのバウンディング・ボックスに対して正しい物体カテゴリーを関連付けること」を意味します。画像処理の領域における他のタスクと同様、物体検出を実行するときにもディープ・ラーニングは最先端の手法として力を発揮します。 物体検出の仕組み 物体検出に関する重要な問題の1つは、前景にある物体の数が画像によって様々に異なる、ということです。しかし、ここでは物体検出の仕組みを理解するために、まずは1つの画像に1個の物体しか存在しないと仮定し、この制約条件の下で物体検出問題を考えてみましょう。1つの画像に1個の物体しか存在しない場合、バウンディング・ボックスの発見と物体のカテゴリー判断という問題は、単純明快な方法で解決することができます。バウンディング・ボックスは4組の数値で表現されますから、バウンディング・ボックスの位置を学習するタスクは、回帰問題として無理なくモデル化することが可能です。そのタスクが済めば、物体のカテゴリー判断は分類問題として解くことができます。 ここでの「制約条件付きの物体検出」という課題に関する回帰および分類問題に対する解法を提供するのは、図2に示す畳み込みニューラル・ネットワーク(CNN)です。コンピューター・ビジョンの領域における他の従来型タスク(例:画像認識、キーポイント検出、セマンティック・セグメンテーションなど)の場合と同様、ここでの「制約条件付きの物体検出」という課題では、固定数のターゲットを扱います。これらのターゲットの当てはめは、固定数の分類または回帰問題としてターゲットをモデル化することによって実行可能です。 前述のとおり、真の物体検出はN個の物体を処理できなければなりません(Nの値は画像によって異なります)。残念ながら、図2に示したCNNは、このような、より一般的な問題を解決することができません。しかし、多くの矩形ボックスの位置とサイズについて仮説を立てることによってCNNの変種を使用し、CNNを物体の分類にのみ利用する、というやり方は可能かもしれません。私たちはそのような場合の矩形ボックスを、しばしば「ウィンドウ」と呼びます。ウィンドウ仮説を汎用的なものにするためには、画像内で考えられる全ての位置とサイズをカバーしなければなりません。それができれば、それぞれのサイズと位置のウィンドウについて、「その中に物体が存在するかどうか?」と、「存在する場合、物体のカテゴリーは何か?」を判断することが可能になります。 図3は、このアプローチで物体検出を実現する場合に候補となりうるウィンドウをいくつか示しています。画像は有限個のピクセルで構成されていますから、ウィンドウの総数は膨大です。検討すべきウィンドウの数の膨大さを考えると、このアプローチはコンピューティングの観点からは非実用的です。 ウィンドウを用いて物体を探すための効率的な手法 では、「一部のウィンドウだけを調べる」というスマートな方法で物体検出を実行することは可能でしょうか? 答えは「イエス」です。このような「ウィンドウの部分集合」を発見する方法には2つのアプローチがあり、それらは2つの異なる物体検出アルゴリズムへとつながります。 第1のカテゴリーのアルゴリズムは、最初にリージョン・プロポーザル(領域候補の抽出)を実行します。これは具体的には、コンピューター・ビジョンの従来の手法(選択的検索など)を用いて、あるいは、ディープ・ラーニングに基づくリージョン・プロポーザル・ネットワーク(region proposal network: RPN)を用いて、物体を含んでいる可能性の高い領域を選択する、ということです。候補ウィンドウの少数のセットを収集したら、セットの数だけ回帰モデルおよび分類モデルを定式化することによって、物体検出問題を解決することができます。このカテゴリーに属するアルゴリズムとしては、Faster R-CNN[1]、R_FCN[2]、FPN-FRCN[3] などがあります。このカテゴリーのアルゴリズムは、通常、「2段階法」と呼ばれます。これらは一般に、この後に紹介する「1段階法」に比べ、正確性は優れていますが、処理は低速です。 第2のカテゴリーのアルゴリズムは、固定位置にある固定サイズの物体だけを探します。これらの位置とサイズは、ほとんどのシナリオがカバーされるように戦略的に選択されます。通常、これらのアルゴリズムは、元の画像を固定サイズのグリッド(格子)領域に分割した上で、それぞれのグリッド領域に関して、あらかじめ決めておいた所定の形状およびサイズの、固定数の物体を予測することを試みます。このカテゴリーに属するアルゴリズムは「1段階法」と呼ばれます。この手法の例としては、YOLO[4]、SSD[5]、RetinaNet[6]などが挙げられます。このカテゴリーのアルゴリズムは、通常、より高速に実行できますが、正確性は劣ります。このタイプのアルゴリズムは、リアルタイム検出を必要とするアプリケーションで活用されることが多くなっています。 以下では、これらのうち2つの一般的な物体検出手法を取り上げ、もう少し詳しく検討します。 YOLOによる物体検出 YOLO (You Only Look Once) は、1段階の物体検出手法を用いる代表的なアルゴリズムです。このアルゴリズムが物体を検出するためにたどるステップを、図4とその下の箇条書きに示します。 元の画像を等サイズのグリッドに分割します。 それぞれのグリッドに関して、事前に定義した形状の、グリッドの中心を中心位置とするバウンディング・ボックスを、事前に設定した数だけ予測します。それぞれの予測には、クラス確率と物体信頼度(その領域が物体を含んでいるか、あるいは背景のみか)が関連付けられます。 最後に、高い物体信頼度およびクラス確率が関連付けられたバウンディング・ボックスを選択します。最も高いクラス確率を持つ物体クラスが、その物体のカテゴリーとなります。 事前に定義した形状の事前に設定した数のバウンディング・ボックスは「アンカーボックス」と呼ばれ、k平均法アルゴリズムによってデータから取得されます。アンカーボックスは、物体のサイズと形状についてデータセットから予備知識を捕捉します。異なるサイズおよび形状の物体を検出するためには、異なるアンカーが設計されます。例えば図5では、1つの場所に3種類のアンカーが表示されていますが、最終的には赤のアンカーボックスが中央の人物を検出します。言い換えると、アルゴリズムは、物体とこのアンカーボックスの適切なサイズを一緒に検出します。通常、最終的な予測は、アンカーの位置またはサイズ自体とは異なります。なぜなら、画像の特徴量マップから取得される最適化されたオフセット値が、アンカーの位置またはサイズに加算されるからです。 YOLOアルゴリズムのアーキテクチャを図6に示します。検出層は、多数の回帰および分類オプティマイザーを含んでおり、その数はアンカーの数によって決まります。 Faster RCNNによる物体検出 Faster RCNN[1] は、2段階の物体検出アルゴリズムです。図7は、Faster RCNNの2つの段階を示しています。アルゴリズム名に “Faster” と付いていますが、「1段階法よりも高速」という意味ではありません。この名称は歴史的な経緯を反映しており、以前のバージョン(オリジナルのRCNNアルゴリズム[7] やその後継のFast RCNN[8])よりも高速であることを示しています。Faster RCNNにおける高速化は、個々の関心領域(Region of Interest: RoI)に関する特徴抽出計算を共有する手法と、ディープ・ラーニングに基づくリージョン・プロポーザル・ネットワーク(RPN)の導入によって実現されています。 多数のCNN層を用いて特徴量マップを抽出した後、リージョン・プロポーザル・ネットワーク(RPN)が、物体を含んでいる可能性の高い多数のウィンドウを出力します。その後、アルゴリズムは、各ウィンドウ内部の特徴量マップを取得し、それらを固定サイズにリサイズ(またはポール)することで(=RoIプーリング)、物体のクラス確率とより正確なバウンディング・ボックスを予測します。
SAS코리아, ‘SAS 뱅킹 이노베이션 포럼’ 성료 인공지능(AI)과 머신러닝 기반 솔루션 활용한 성공적인 금융 디지털 혁신 방안 공유 ATB 파이낸셜·NH농협은행, SAS 바이야로 업무 생산성 향상 및 최적의 고객 서비스 제공 2019년 3월 7일 – 세계적인 분석 선두 기업 SAS(쌔스)코리아(www.sas.com/korea)가 6일(수) 서울 여의도 콘래드호텔에서 국내 주요 금융권 관계자가 참석한 가운데 인공지능(AI)과 머신러닝(ML)
As of December 2018, any customer with a valid SAS Viya order is able to package and deploy their SAS Viya software in Docker containers. SAS has provided a fully documented and supported project (or “recipe”) for easily building these containers. So how can you start? You can simply stop
In this post, we continue our discussion of geography variables, the foundation of Visual Analytics Geo maps. This time we will look at Custom Coordinates. As with any statistical graph, understanding your data is key. But when using Custom Coordinates for geographic maps, this understanding becomes even more important. Use
データサイエンティスト(以降、DSと表記)は、お好みのプログラミング言語を使用して、日々モデリングを行っています。昨今は、その中でもオープンソースのプログラミング言語であるPythonやRを使用されている方の割合が多くなってきているようです。その結果として、企業の分析組織やチーム内には複数の異なる言語を活用するDSが混在するケースも見受けられます。(一人で両方の言語を操る方もいます。) 「Pythonを操るAさんが作成されたモデルと、Rを操るBさんが作成されたモデル、どちらの精度が高いのかを容易かつビジュアルに比較することができたら…」 ということで、今回は、SAS ViyaのModel Studioを使用し、ビジュアルなパイプライン上での異なる言語間モデル精度比較をご紹介します。 手順は以下の通りです。 ① プロジェクトの新規作成と学習用のデータソース選択 ② パイプラインの作成と実行 ③ 実行結果(モデル精度)の確認 ① プロジェクトの新規作成と学習用のデータソース選択 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」の「1.プロジェクトの新規作成と学習用のデータソース選択」を参照ください。 ② パイプラインの作成と実行 画面上部にある「パイプライン」をクリックします。 パイプラインには「データ」ノードのみが表示されています。左端の機能ノードアイコンをクリックすると、 パイプラインに追加可能な機能ノードのリストが表示されます。 まずは学習データに対する前処理として、欠損値補完を行います。 「データマイニングの前処理」内にある「補完」を「データ」ノード上にドラッグすると、 「データ」ノードの下に「補完」ノードが追加されます。 同様の手順で、「その他」内にある「オープンソースコード」を「補完」ノード上へドラッグすると、「補完」ノードの下に「オープンソースコード」ノードが追加されます。 機能ノードごとのオプション設定は、右側画面内で行います。 「言語」が「Python」であることを確認し、「開く」をクリックします。 開かれた画面内に、比較対象のPythonのコード(ランダムフォレストのモデル)をコピーします。右上の「保存」(フロッピーディスクアイコン)をクリックし、「閉じる」をクリックします。 ※ターゲット変数名や入力変数リスト名など、画面左側の変数名を使用することによって、オープンソースコードノードとその他のノード間でのデータ連携が可能となり、異なる言語のモデル間での精度比較も可能になります。各種規定変数名の詳細に関しては、オンラインマニュアルを参照してください。 「オープンソースコード」ノードの右側にある3つのドットが縦に並んでいる(スノーマン)アイコンをクリックし、「名前の変更」を選択し、 「Pythonフォレストモデル」に変更します。 このようにドラッグ操作でノードを追加する以外に、パイプライン上のメニューからノードを追加することもできます。 「補完」ノードのスノーマンアイコンをクリックし、「下に追加」>「その他」>「オープンソースコード」の順に選択すると、 「補完」ノードの下に「オープンソースコード」ノードが追加されます。 以降、同様の手順で比較対象のRのコード(ランダムフォレストのモデル)をコピーし、ノードの名前を変更します。 「オープンソースコード」ノードは、データに対する前処理として使用することもできます。デフォルトでは、「オープンソースコード」ノードは、データに対する前処理として認識されているので、これを「教師あり学習」に切り替えます。 PythonとRのモデルノードそれぞれのスノーマンアイコンをクリックし、「移動」>「教師あり学習」を選択します。 すると、「モデルの比較」ノードが追加され、PythonとRのモデルノードと接続されます。 パイプラインが完成したので、右上の「パイプラインの実行」アイコンをクリックし、実行します。 ③ 実行結果(モデル精度)の確認 処理が正常に完了したら、「モデル比較」ノードのスノーマンアイコンをクリックし、「結果」を選択します。 Rのフォレストモデルの方が精度が高い、チャンピオンモデルであると表示されました。 リフトやROC、様々な統計量で、精度を詳細に比較することもできます。 以上が、ビジュアルパイプラインでPythonとRのモデル精度を比較する手順です。 もちろん、必要に応じて、PythonやRのモデルとSASのモデルの精度を比較することもできます。 ※ビジュアルパイプラインでPythonとRのモデル精度を比較は、SAS Viya特設サイトにある動画でもご覧いただけます。 ※実際にPythonとRのモデル精度比較を試してみたい方は、Githubに公開されているアセットを活用ください。
This is the second post in my series about a computer vision project I worked on at SAS. In my previous post, I talked about my initial research and excitement for the project. In this post, I’ll talk about how I refined my goals and got started with the project
Multi-tenancy is one of the exciting new capabilities of SAS Viya. Because it is so new, there is quite a lot of misinformation going around about it. I would like to offer you five key things to know about multi-tenancy before implementing a project using this new paradigm. All tenants
Creating a map with SAS Visual Analytics begins with the geographic variable. This blog post explains the first type of geography variable that VA supports: predefined. Future posts will cover the other two types of geography variables in VA: custom coordinates and custom polygons.
Each day, more than 130 Americans die from opioid overdoses. Combating the opioid epidemic begins with understanding it, and that begins with data. SAS recently partnered with graduate students from Carnegie Mellon University (CMU) 's Heinz College of Information Systems and Public Policy to understand how data mining and machine
I don't know about you, but when I read challenges like: Detecting hidden heart failure before it harms an individual Can SAS Viya AI help to digitalize pension management? How to recommend your next adventure based on travel data How to use advanced analytics in building a relevant next best
近年、AIや機械学習がブームとなり、キーワードだけが先走りしている傾向にあります。結果、「AI・機械学習を活用する」こと自体が目的化し、ツールや環境を導入したものの、ビジネス価値創出に至らないケースも多いようです。 その最大の要因は、肝となる「アナリティクス・ライフサイクル」の欠如にあります。 まず、業務課題を明確化した上で、その課題を解決するためにはデータ分析が必要であり、分析には元となるデータが必要になります。必要なデータを準備し、その中身を探索し、その結果に基づいて予測モデルを開発し、作成されたモデルを業務に実装する、このサイクルを素早く回し続ける、これが、企業が抱える業務課題を解決し、ビジネス価値(収益の拡大、コストの削減、リスクの低減、など)を創出するための鍵なのです。 アナリティクス・ライフサイクルを構成する3つの要素: アナリティクス・ライフサイクルを素早く回すためには、上記3つの要素がシームレスに連携する必要があります。しかし、多くの企業では、従来から、複数の異なるベンダーの異なる商用ソフトウエアや環境、あるいはオープンソースソフトウエアなどを継ぎ接ぎして分析環境を構築してきたため、このサイクルを回すためには多大な時間を擁してしまい、変化への素早い対応は困難な状況にありました。 この課題に対して、AIプラットフォーム SAS® Viya®では、アナリティクス・ライフサイクルに必要な機能要素を網羅した上で、それぞれがシームレスに連携し、高速に回し続けることが可能となっています。 そして、SAS Viyaには、分析者のスキルレベルに応じて、プログラミングインターフェースとグラフィカルインターフェースの両方が備わっています。 データサイエンティストであれば、データの準備から探索、そしてモデル生成までをお好みの言語(SAS, Python, R, Java, Lua)を使用して実施することができます。 一方で、コーディングスキルを持たないビジネスユーザーであれば、統合グラフィカルユーザーインターフェース上でアナリティクス・ライフサイクルをシームレスかつ高速に回し続けることが可能となっています。 企業が、その企業の競合企業よりも早く、正確に、アナリティクス・ライフサイクルを回すことによって、以下が実現されます。: より多くの反応率の高いマーケティングキャンペーンをより早く実施し、より多くの新規顧客を獲得し、既存顧客の離反を防止 より早く正確に、より多くの製造設備の異常予兆を検出し、設備のダウンタイムを最小化し、生産量を最大化 より多くの種類の不正をより早く正確に検知し、不正により齎されるリスクや損失を低減し、企業の信頼度を向上 企業を取り巻く環境の変化に、より素早く対応 …など Data:データの準備 異なる分析要件ごとに、分析者自身で、分析に必要なデータは都度準備する必要があります。SAS Viyaでは、分析者自身で分析に必要なデータをセルフサービス型で準備することができるようになっています。 マウスのポイント&クリック操作だけで、データのプロファイリングからクレンジング、加工・変換・結合などを自由自在に行うことができ、分析プロセス全体の中で7、8割の工数を占めると言われるデータ準備工数や時間を大幅に削減することが可能となります。 Discovery:データの探索とモデル生成 次に、準備したデータの中身を探索します。SAS Viyaでは、コーディングスキルを持たないビジネスユーザーでもマウスの簡単操作だけで、データの探索や分析が可能になっています。単一の画面内で、過去の見える化から高度な機械学習までもが可能で、できあがった画面をレポートやダッシュボードとして即座に全社に公開し、共有することもできます。 データサイエンティストであれば、モデル生成の手前のビジュアルなデータ探索手段として活用することができます。 データ探索の結果に基づき、予測モデルを構築します。 SAS Viyaでは、ビジュアルなUIからマウスのドラッグ&ドロップ操作で、機械学習、時系列予測、テキスト解析の各種モデル生成プロセスをグラフィカルなフロー図(パイプライン)として描き、実行することが可能になっています。 このモデル生成パイプラインは、ドラッグ操作で一から作り上げることもできますし、SASの長年のベストプラクティスに基づき、予め用意されているパイプラインのテンプレートを使用して、精度の高い予測モデルを自動生成することも可能です。 Deployment:モデルの業務実装 生成されたモデルは統合的に管理した上で、業務に実装することができます。 モデル管理画面では、モデルにテストデータを当てはめてスコアリングテストの実施や、モデルのデプロイ(業務実装)、業務に実装後のモデル精度のモニタリング、再学習を実行し、モデル精度を改善、そしてバージョン管理など、モデルを統合管理することができます。 管理されたモデルは、異なる業務要件ごとに異なる環境へデプロイ(業務実装)することができます。 REST API:既存のアプリケーションからREST APIを通じて、SAS Viyaサーバー上にあるモデルにデータを当てはめてスコアリング(予測処理)を行い、結果を受け取ることができます。 インデータベース:モデルをデータベース内にデプロイし、データベース内で直接スコアリングを実施することができます。これによって、スコアリング対象の大量のデータを転送する必要が無くなり、処理の効率化や意思決定の迅速化も図れます。 インストリーム:SAS Viyaには、オンライン機械学習・リアルタイム処理向けにストリーミングのエンジンも実装されています。SAS Viyaのリアルタイムプロセスにモデルをデプロイすることで、リアルタイム・スコアリングも実現されます。 以上のように、企業が業務課題を解決し、ビジネス価値を創出するためには、「アナリティクス・ライフサイクル」が肝であり、このサイクルをシームレスかつ素早く回し続けることが、企業の変化対応力、競争力強化に直結するということです。 従来からSASを活用し、ビジネス価値を出している企業はすべてこのサイクルを回し続けています。そして、AIプラットフォームSAS Viyaでは、これを強力に支援することができるということです。
This post rounds out the year and my series of articles on SAS REST APIs. You can read all of my posts on this topic here. The first two articles in the series: Using SAS Viya REST APIs to access images from SAS Visual Analytics and Using SAS Cloud Analytics
Sie lebt in der Cloud und ist sehr genügsam. Als Allesfresser nimmt sie jegliche Art von Daten dankbar entgegen. Seien das nun strukturierte oder unstrukturierte Daten in allen Formen und Facetten … Sie ist einerseits mit sehr wenig zufrieden und holt das Bestmögliche aus wenigen Daten heraus, kann allerdings, wenn
Find out about this new set of tools designed to be used in conjunction with the sas-admin command line interfaces.
PythonからSAS Viyaの機能を利用するための基本パッケージであるSWATと、よりハイレベルなPython向けAPIパッケージであるDLPyを使用して、Jupyter NotebookからPythonでSAS Viyaのディープラーニング機能を使用した時系列予測を試してみました。 大まかな処理の流れは以下の通りです。 1.必要なパッケージ(ライブラリ)のインポート 2.Sin波データの生成 3.セッションの作成 4.RNN向け時系列データセットの作成 5.モデル構造の定義 6.モデル生成(学習) 7.予測 1.必要なパッケージ(ライブラリ)のインポート swatやdlpyなど、必要なパッケージをインポートします。 import numpy as np import pandas as pd import matplotlib.pyplot as plt import swat.cas.datamsghandlers as dmh from swat import * import dlpy from dlpy import Sequential from dlpy.layers import * from dlpy.model import Optimizer, AdamSolver, Sequence
PythonからSAS Viyaの機能を利用するための基本パッケージであるSWATと、よりハイレベルなPython向けAPIパッケージであるDLPyを使用して、Jupyter NotebookからPythonでSAS Viyaの機能を使用して一般物体検出(Object Detection)を試してみました。 今回は、弊社で用意した数枚の画像データを使用して、処理の流れを確認するだけなので、精度に関しては度外視です。 大まかな処理の流れは以下の通りです。 1.必要なパッケージ(ライブラリ)のインポートとセッションの作成 2.一般物体検出向け学習用データの作成 3.モデル構造の定義 4.モデル生成(学習) 5.物体検出(スコアリング) 1.必要なパッケージ(ライブラリ)のインポートとセッションの作成 swatやdlpyなど、必要なパッケージをインポートします。 from swat import * import sys sys.path.append(dlpy_path) from dlpy.model import * from dlpy.layers import * from dlpy.applications import * from dlpy.utils import * from dlpy.images import ImageTable from dlpy.splitting import two_way_split from dlpy.blocks import *
Disclaimer: this article does not cover or promote any political views. It’s all about data and REST APIs. I am relieved, thankful, elated, glad, thrilled, joyful (I could go on with more synonyms from my thesaurus.com search for 'happy') November 6, 2018 has come and gone. Election day is over.
Prior to distributed DATA Step, DATA Step programmers never had to think about achieving repeatable results because DATA Step ran single-threaded and the source SAS7BDAT dataset was stored on disk. But if you need to obtain repeatable results in DATA Step code that runs distributed in CAS, this post provides a workaround that you'll want to keep handy.
This blog post outlines how to create your own CAS functions using the CAS Language. It also includes a partial list of both CASL built-in and common functions for reference.
Migration, version road maps and configurations were the themes of several questions that came up in a recent webinar about combining SAS Grid Manager and SAS Viya. This blog post gives the answers.
You can communicate with various clients (SAS, Python, Lua, Java, and REST) in the same place using SAS® Cloud Base Analytics Services (CAS) in SAS Viya. But before you can do any analysis in CAS you need some data to work with, and a way to get to it. Check out this dynamic data selection tip using SAS Viya and Python.