SAS Korea

데이터를 넘어 인텔리전스 세상으로 향하는 SAS 코리아의 여정에 함께 하세요.
Analytics | Fraud & Security Intelligence
WooSeong Jeon 0
디지털 시대의 새로운 사기위험에 대응하는 시스템과 운영전략

고객은 금융기관이 개인 정보를 안전하게 관리하면서도 거래지연 없는 쉽고 빠른 서비스를 제공 해주기를 원합니다. 따라서 디지털 시대의 금융기관은 보다 빠르고 편리한 서비스를 보다 안전하게 제공하기 위해 실시간으로 위험거래를 탐지할 수 있는 시스템과 위기상황에 신속히 대응할 수 있는 정책이 준비되어야 합니다. 편리함이 가져온 새로운 위험요소 디지털화는 속도와 편리성이 높아 24시간 언제든

Analytics | Data Management
Jong-Phil Park 0
[분석기술의 실용화 전략 #2] Operationalizing Analytics와 세가지 사례

지난 글에서는 분석 모델을 배포하기까지 많은 시간이 소요되는 이유, 이를 극복하기 위한 방법으로서 운영계에 적용하는 ModelOps의 개념과 효과를 소개해드렸습니다. 하지만 통상적으로 기업의 의사결정이 분석의 결과만으로 이뤄지지는 않습니다. 분석 인사이트를 기반으로 하되 기업에서 설정한 비즈니스 룰을 확인해야 하며, 기업 안팎의 상황에 대한 검토도 필요합니다. 금융권을 예로 들면, 고객의 신용대출 요청에 따른

Advanced Analytics | Analytics | Artificial Intelligence | Learn SAS | Machine Learning | Programming Tips
0
[SAS로 딥러닝 시작하기#2]딥러닝 성능 개선 방법 '하이퍼파라미터 튜닝'

지난 딥러닝 시리즈에서는 SAS Visual Data Mining and Machine Learning을 활용한 딥 러닝 모델 생성에 대한 내용 중 <기본 심층 신경망(DNN) 모델 아키텍처와 배치 정규화를 사용한 DNN 모델 구축>에 대해 소개해 드렸습니다. 이번 시리즈에서는 딥 러닝 성능을 개선할 수 있는 하이퍼파라미터를 조정에 대해 소개해 드립니다. 일정 기간에 걸쳐 성능이 향상되고

Analytics | Data Management
Jong-Phil Park 0
[분석기술의 실용화 전략 #1] 데이터 중심의 의사결정을 위한 마지막 관문, 모델 배포와 최적화

기업에서는 하루에도 여러 차례 비즈니스에 중요한 의사결정을 내리고 있습니다. 최선의 선택을 하기 위해 많은 기업이 강력한 분석 모델을 개발하여 의사결정 프로세스에 분석 결과를 통합하고 있습니다. 하지만 의사결정에 결정적인 역할을 하는 대부분의 분석 모델은 빛을 보지 못합니다. 데이터 중심의 의사결정을 위한 실용화의 마지막 관문을 넘지 못하기 때문입니다. 본 글에서 데이터 중심의

1 22 23 24 25 26 68