Korean

Analytics
Bang-Bon Goo 0
하이브리드 머신러닝으로 텍스트 분석의 한계를 넘다

모든 비즈니스 영역으로 확대되는 텍스트 분석 그동안 소셜 미디어 분석에 국한되었던 텍스트 분석은 이제, 콜센터, 마케팅, 품질 영역으로 확장은 물론 최근 들어 전통적인 수작업 영역(발주처 요구사항 분석, AI기반 안전사고 예방 등)까지 확대하고 있습니다. 텍스트 분석을 하기 위해서는 텍스트와 함께, AI 기반의 NLP 머신러닝 엔진이 필수입니다. 이 엔진 내에서 문맥 기반의

Analytics
WooSeong Jeon 0
고객을 바로 알아야 비로소 보이는 Fraud

사기 위험 증가, 그리고 고객 바로 알기 무수히 많은 고객 거래에서 사기를 찾는 일은 모래 속에서 바늘을 찾는 것과 같다고들 말합니다. 디지털 가속화로 휴대폰 하나만 있으면 언제 어디서든 원하는 서비스를 이용하고 비용을 지불하는 편리한 시대를 살고 있는 지금, 기업과 기관은 고객에게 보다 빠르고 더 많은 편의를 제공하여 시장과 고객을 뺏기지

Analytics
Il-Hyoung Kwon 0
Forecasting 알고리즘, 미래를 변화시키다

포스트 코로나 시대의 불확실한 미래를 헤쳐나가기 위해서는 그 어느 때보다 예측력을 높여야 합니다. 예측 알고리즘을 사용하면 불확실성을 최소화하고, 정책이나 전략에 따른 변화를 보다 정확히 가늠하며 최적의 의사결정을 내릴 수 있습니다. SAS Visual Forecasting이 필요한 이유 Forecasting 알고리즘은 어떻게 미래를 변화시킬 수 있을까요? ARIMA와 같은 전통적인 단변량 시계열 알고리즘은 타깃(종속) 변수만을

Analytics
ByungWook Choi 0
제조 산업을 위한 성공적인 디지털 트랜스포메이션 전략

성공을 위한 3가지 필수 요소 시장조사기관인 IDC는 올해, 제조 분야에서 디지털 트랜스포메이션에 가장 많은 투자가 이뤄질 것으로 전망합니다. 구체적으로 디스크리트 제조 2,250억 달러, 프로세스 제조 1,250억 달러, 총 3500달러의 투자를 예상합니다. 디지털 트랜스포메이션을 성공적으로 수행하기 위해서는 3가지 요소가 필요합니다. ▶첫째, 사람. 모든 혁신의 주체는 사람입니다. 사람의 능력, 조직구조, 문화가 상당히

Advanced Analytics
Byoung-Jeong Choi 0
SAS AutoML이 주도하는 분석 인사이트

AutoML은 최근 몇 년간 가장 빠르게 진화하는 AI기술중 하나입니다. AutoML은 시티즌 데이터 사이언티스트는 물론 데이터 사이언티스트도 더 빨리 더 많은 모델을 구축하고, 모델의 정확도를 개선하여 보다 생산적인 과제에 집중할 수 있게 합니다. 이를 통해 기업은 조직 전반에 업무 효율성과 전문성을 강화할 수 있습니다. SAS AutoML 플랫폼의 핵심은 분석 라이프사이클 프로세스

Analytics
Keun-Tae Kim 0
SAS Viya, 클라우드에서 빠르고 신뢰성 있는 의사결정 실현  

분석은 왜, 전사적으로 활용되지 못할까요? 최근 맥킨지 연구에 따르면 AI와 분석을 전 세계 산업 전반에 적용할 경우, 약 9조~15조 달러의 가치 창출이 가능합니다. 그런데도 오직 8%의 주요 기업만이 전사적으로 분석을 활용하고 있습니다. 무려 90% 이상의 기업이 분석을 조직의 모든 영역으로 확산하지 못하고 있는 것입니다.    조직 내 분석 확산과 관련하여 주요 관계자들은 각기 다른 고민을 안고 있습니다.  ▶IT리더는 제한된 비용으로 신기술을 적용하고 혁신을 이루어야 합니다. 한편으로는 끊임없이 개발 및 변경되는 분석 모델을

Advanced Analytics | Analytics | Fraud & Security Intelligence
KiWan Lee 0
금융산업 Analytics 고도화를 위한 주요 트렌드

Contents 변화는 기회를 만든다! 2021년 주요 변화 동인 금융산업 Analytics 고도화를 위한 주요 Trends 변화는 기회를 만든다! 1968년 멕시코 올림픽 이전에 육상 높이뛰기는 ‘엎드려뛰기’나 ‘가위뛰기’가 일반적인 방식이었으며, 200cm 이상을 뛰어야 메달권에 들어갈 수 있었다. 하지만, 1963년 메드퍼드 고등학교 2학년에 재학 중이던 Dick Fosbury는 높이뛰기 선수 테스트에서 160cm를 넘는데 실패하였다. 사실

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Jihye Yoo 0
미국 식품의약국(FDA), SAS와 4,990만 달러(약 560억원) 계약 체결

FDA, 의약품 평가 및 연구 센터 위해 SAS 고급분석 및 AI 기술 도입 미국 식품의약국(FDA)은 SAS® Viya® 플랫폼 내 자연어 처리, 인공지능 및 머신러닝 기능 등을 기반으로 새로운 도약을 위해 SAS와 40년 파트너십을 연장하기로 했습니다. 향후 5 년간 4,990 만 달러(약 560억원)에 달하는 총괄 구매 계약(BPA)을 통해 SAS는 FDA에서 진행중인

Analytics
Jihye Yoo 0
2021년 주목해야 할 데이터 분석 8대 키워드

지난해는 전례없는 코로나19 대유행으로 전 세계의 각국 정부 및 기업은 코로나19로 인한 위기를 극복하고자 디지털 트랜스포메이션을 통한 혁신을 가속화한 한 해였습니다. 불확실성 속에 찾아온 2021년, SAS의 여러 전문가들은 2021년 데이터 분석 트렌드를 인공지능(AI), 클라우드, 백신 등의 키워드를 통해 전망했습니다. 2021년 주목해야 할 데이터 분석 8가지 트렌드를 소개합니다. 기업의 임원들이 AI를

Analytics
Jihye Yoo 0
SAS, Boemska 인수 및 새로운 CTO 임명

SAS가 클라우드 시장 및 타사 애플리케이션 등에 AI 접목을 촉진하기 위해 로우코드/노코드 애플리케이션 배포 및 분석 워크로드 관리 전문 영국 비상장 회사 보엠스카(Boemska)사를 인수했습니다. SAS는 이번 인수로 획득한 기술을 SAS Viya에 적용해 고객의 클라우드 분석 관련 비용을 절감하고, 모델을 모바일 및 엔터프라이즈 앱 등에 이식할 수 있게 될 예정입니다. 이를

1 9 10 11 12 13 30