Uncategorized

Analytics | Artificial Intelligence
KiWan Lee 0
코오롱베니트, 한국 SAS 고객에게 가치를 더하다.

SAS와 같은 글로벌 기업이 비즈니스를 할 때에는 글로벌 관점과 현지 관점의 균형을 맞추는 것이 중요합니다.  제품은 글로벌 시장 전반에 걸쳐 제공되어야 하고, 글로벌 경쟁력을 갖춰야 합니다. 반면, 고객과의 관계 구축은 현지 상황에 맞아야 합니다. 이는 적절한 현지 파트너와 협력을 통해서 강화할 수 있습니다. SAS코리아와 오랜 세월을 함께 동행해온 든든한 파트너,

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Machine Learning
Falko Schulz 0
Unveiling Oceanus: Harnessing SAS Visual Analytics to combat illegal fishing networks

As part of this year's IEEE Visual Analytics Science and Technology (VAST) Challenge, a group of SAS data scientists puit SAS Viya and related machine learning tools to the ultimate test - to identify individuals in a complex fishing network. Excitedly, the team received the Honorable Mention Award for Breadth of Investigation!

Analytics
0
バラといえばナイチンゲールのバラ

幼い頃、家の庭にたくさんのバラがあり、手入れが大変だった思いがある。トゲに刺されて痛い思いをしたり、傷になったりしたことを覚えている。興味深いことに、統計学の歴史にはナイチンゲールの「バラ」というグラフが登場する。 「白衣の天使」として知られるイギリスの看護師フロレンス・ナイチンゲールは、優れた統計学者でもあった。彼女は19世紀のクリミア戦争で看護師として派遣され、膨大な戦死者・傷病者データを分析し、多くの兵士が戦傷ではなく劣悪な衛生状態のために命を落としていることを明らかにした。その後、政治や行政に向けに「ローズダイアグラム」という革新的なグラフで報告した。 ローズダイアグラムは、円グラフの一種で、死因を視覚的に示すチャートである。月ごとの死亡者数を戦傷を赤、衛生状態や栄養不足を青、その他の要因を黒で色分けし、それぞれの面積で表現したものである(Florence Nightingale's Rose Diagram)。このグラフにより、衛生改善の必要性が明確になり、医療環境の改善が進んで傷病兵の死亡率が大幅に減少したのは言うまでもない。 統計学は記述統計と推測統計に分かれ、記述統計はデータの特徴を分かりやすく表現することを目的とする。ナイチンゲールの事例は、記述統計とデータ可視化が如何に重要かを物語っている。SASには「SAS Visual Analytics」という優れた可視化ツールがあり、基礎から上級までの関連コースも提供されている(SASトレーニングコース)。 2024年8月初旬 相吉

Artificial Intelligence | Machine Learning
Sophia Rowland 0
A Nutrition Label for AI Models: SAS Model Cards Now Available

What sets the SAS Model Card apart from previous model cards is the use of descriptive visuals, to make model cards accessible to all personas involved in the analytics process, including data scientists, data engineers, MLOPs engineers, managers, executives, risk managers, business analytics, end-users, and any other stakeholder with access to the SAS Viya environment.

Analytics | Learn SAS
Rick Wicklin 0
Poisson regression in SAS

This article demonstrates how to use PROC GENMOD to perform a Poisson regression in SAS. There are different examples in the SAS documentation and in conference papers, but I chose this example because it uses two categorical explanatory variables. Therefore, the Poisson regression can be visualized by using a contingency

Analytics | Artificial Intelligence
0
AI/ML 기반 모델 개발, 과제와 해결방안은?

기업내에 AI/ML를 적용하기 위해, 업무 관점에서 시민 데이터 사이언티스트(Citizen Data Scientist, 이하 CDS)와 그 필요 역량인 데이터 문해력(Data Literacy)의 중요성이 높아지고 있습니다.(참고 : 데이터 문해력과 시민 데이터 사이언티스트의 필요 역량) 이와 연결하여, 데이터를 기반으로 신속하게 개발한 예측 모델을 업무 시스템에 통합 또는 활용하기 위해 IT 관점에서 해결해야할 과제와 접근 방안에 대해

Analytics
Hyeshin Hwang 0
생성형 AI 사용 1위 국가는 어디일까요?

생성형 AI에 대한 전세계 기업들의 투자와 활용이 계속되는 가운데, 이와 관련된 흥미로운 조사 결과가 발표되었습니다. SAS가 최근 콜먼 파크스 리서치(Coleman Parkes Research Ltd.)에 의뢰한 전세계 조사에 따르면 생성형 AI를 가장 적극적으로 사용하고 있는 나라는 중국인 것으로 나타났습니다.  중국의 비즈니스 의사 결정자들은 자사 조직의 83%가 이 기술을 이용하고 있다고 응답했습니다. 이는

Analytics
0
アジサイと書いて統計学と機械学習と読む

この時期の私の楽しみは、散歩の途中でかわいらしい色とりどりのアジサイの花を眺めることだ。アジサイは、「集まる」や「寄せ集める」という意味があり、花弁がいくつも集まっている咲き姿に由来しているそうだ。別名「七変化」とも呼ばれており、土の性質によって花色が変わるのが特徴。土が酸性だとブルー系、中性からアルカリ性だとピンク系になるそうだ。面白いことに、ブルーのアジサイをアルカリ性の土に植え替えると薄紫色のアジサイに変化するそうだ。 「統計学と機械学習の違いは何か」という質問を受けることがある。土の性質で色が変わるアジサイのように、機械学習と統計学も同じような関係ではないかと思う。両者の目的は似ているが、ビッグデータと高度な計算能力という土俵の違いが機械学習の発展に大きく寄与したのは間違いない。ただ、機械学習の歴史は比較的新しいが、統計学がなければその発展は考えにくい。例えば、決定木分析は機械学習が流行る前から統計学の手法の一つだったが、機械学習の進展とともに進化してきた。ちなみに決定木分析は樹形図の形式で結果を出力し、そのため初心者でも理解しやすい分析手法の一つ。SASでは、機械学習をはじめとして、ニューラルネットワーク、AI関連のトレーニングコースが年に数回開催されている(SASトレーニングコース)。 ※Google Trendによると日本での検索数は、2016年当りから交差する形で機械学習が統計学を上回るようになった。機械学習が統計学より広まったのは、ビジネスパーソンであろうが消費者であろうが、意思決定の場面で使われる頻度や処理速度に関連があると思う。 2024年7月初旬 相吉

1 2 3 4 5 255