Tag: ModelOps

Analytics
0
ModelOps로 구현하는 모델 관리 그 이상의 효과!

AI/ML 모델 개발 상의 어려움과 이를 해결하기 위한 접근법으로서 ModelOps의 필요성이 대두되고 있습니다. (참조 : AI/ML 기반 모델 개발, 과제와 해결방안은?) 이번 글에서는 ModelOps가 구체적으로 어떤 제품인지, 어떤 장점을 제공하며 구현방법은 어떠한지 등에 대해 설명드리도록 하겠습니다. 이에 앞서 ModelOps의 구현에 중요한 역할을 하는 ‘모델 거버넌스’에 대해 잠깐 짚어보도록 하겠습니다. 모델

Analytics | Artificial Intelligence
0
AI/ML 기반 모델 개발, 과제와 해결방안은?

기업내에 AI/ML를 적용하기 위해, 업무 관점에서 시민 데이터 사이언티스트(Citizen Data Scientist, 이하 CDS)와 그 필요 역량인 데이터 문해력(Data Literacy)의 중요성이 높아지고 있습니다.(참고 : 데이터 문해력과 시민 데이터 사이언티스트의 필요 역량) 이와 연결하여, 데이터를 기반으로 신속하게 개발한 예측 모델을 업무 시스템에 통합 또는 활용하기 위해 IT 관점에서 해결해야할 과제와 접근 방안에 대해

Advanced Analytics | Artificial Intelligence | Machine Learning
Sophia Rowland 0
MLOps for Pirates and Snakes: The Sasctl Packages for R and Python

SAS Model Manager and the sasctl packages aim to create a seamless ModelOps and MLOps process for Python and R models. Python and R models are not second-class citizens within SAS Model Manager. SAS, Python, and R models can be easily managed using our no-code/low-code interface. This is an interface that can be extended to support a variety of use cases.

Analytics | Data Management
Jong-Phil Park 0
[분석기술의 실용화 전략 #2] Operationalizing Analytics와 세가지 사례

지난 글에서는 분석 모델을 배포하기까지 많은 시간이 소요되는 이유, 이를 극복하기 위한 방법으로서 운영계에 적용하는 ModelOps의 개념과 효과를 소개해드렸습니다. 하지만 통상적으로 기업의 의사결정이 분석의 결과만으로 이뤄지지는 않습니다. 분석 인사이트를 기반으로 하되 기업에서 설정한 비즈니스 룰을 확인해야 하며, 기업 안팎의 상황에 대한 검토도 필요합니다. 금융권을 예로 들면, 고객의 신용대출 요청에 따른

Analytics | Data Management
Jong-Phil Park 0
[분석기술의 실용화 전략 #1] 데이터 중심의 의사결정을 위한 마지막 관문, 모델 배포와 최적화

기업에서는 하루에도 여러 차례 비즈니스에 중요한 의사결정을 내리고 있습니다. 최선의 선택을 하기 위해 많은 기업이 강력한 분석 모델을 개발하여 의사결정 프로세스에 분석 결과를 통합하고 있습니다. 하지만 의사결정에 결정적인 역할을 하는 대부분의 분석 모델은 빛을 보지 못합니다. 데이터 중심의 의사결정을 위한 실용화의 마지막 관문을 넘지 못하기 때문입니다. 본 글에서 데이터 중심의

Analytics
Kagan Sen 0
ModelOps: Operasyonel Analitik

Zorlu Son Aşama: Model İmplementasyonu Günümüzde neredeyse tüm organizasyonların iş kararları vermek için, veriden faydalanarak gerçek zamanlı içgörüler elde etmeye çalıştığı bir dijital yolculuk içerisinde olduklarını görüyoruz. Sınırlarını hayalgücümüzün ve yeteneklerimizin belirlediği veri analitiği bizlere sonsuz bir potansiyel sunuyor. 2019 yılında analitik yazılımlara 190 milyar Dolar yatırım yapılması da şirketlerin

1 2