SAS Korea

데이터를 넘어 인텔리전스 세상으로 향하는 SAS 코리아의 여정에 함께 하세요.
Analytics | Machine Learning
Junhyuk Jeong 0
컴퓨터가 사물을 보는 방법, CNN 이론 - 2편

지난 포스팅에서 컴퓨터 비전의 과거와 CNN(Convolution Neural Network)의 구성 요소, 퍼셉트론, 합성곱층에 대해 알아보았습니다. 합성곱층과 함께 풀링, 활성화 함수, 드랍아웃 등 다양한 요소를 활용한다면 모델의 성능을 더욱 향상시킬 수 있습니다. 오늘 포스팅에서는 CNN에서 사용될 수 있는 다양한 기법들과 함께 CNN의 학습이 어떤 방식으로 이루어지는지 살펴보도록 하겠습니다. 1. CNN의 구성요소 <그림

Analytics
Hyeshin Hwang 0
증가하는 디지털 금융 사기, 어떻게 대처해야 할까요?

금융 사기 설문 응답자 3분의 2가 금융 사기 경험이 있거나 더 철저한 보안을 원할 경우 이용 업체를 전환하겠다고 응답 보안 인증에 생체정보 활용 선호, 보안 강화 위해 개인 정보 공유 허용 SAS가 최근 16개국 13,500명의 소비자를 대상으로 한 설문조사(Faces of Fraud: Consumer Experiences with Fraud and What It Means for

Analytics | Artificial Intelligence | Machine Learning
Junhyuk Jeong 0
컴퓨터가 사물을 보는 방법, CNN 이론 - 1편

컴퓨터가 인간보다 잘 하는 몇 가지 분야가 있는데, 그 중 하나가 바로 이미지 인식입니다. 2012년 알렉스넷이 개발된 이후 컴퓨터 비전 분야는 급속도로 성장하여 우리 일상에 자연스럽게 스며들었습니다. 오늘 포스팅에서는 컴퓨터가 이미지를 어떻게 인식할 수 있는지 이론을 중심으로 살펴보도록 하겠습니다. 1. 컴퓨터 비전의 과거 우리가 모니터를 통해 바라보는 이미지의 구조부터 알아보겠습니다.

Analytics | Fraud & Security Intelligence
Min-Gi Cho 0
통합 금융 범죄에 대처하는 가장 효과적인 방법, 'FRAML'

자금 세탁 방지와 사기 방지 환경의 통합 접근 방안 금융 범죄의 현황과 대응 금융 범죄(Financial Crimes)라 함은 개인적 사용 및 사익을 위해 불법적으로 재산의 소유권을 전환하는 모든 불법 행위를 포함하는 광범위한 용어입니다. 금융 범죄는 다양한 유형의 사기(Fraud), 절도(Theft), 스캠(Scam), 탈세(Tax Evasion), 뇌물 수수(Bribery), 횡령(Embezzlement), 신원 도용(Identity Theft), 위조(Forgery) 등에 의해

1 5 6 7 8 9 68