SAS Korea
데이터를 넘어 인텔리전스 세상으로 향하는 SAS 코리아의 여정에 함께 하세요.
배팅랩: 분석을 지원하는 모델
공원을 걷다 보면 좋아하는 운동을 하는 아이들을 흔히 볼 수 있습니다. 그들은 종종 기술을 연마하기 위해 오랜 시간을 보냅니다. 그러나 혼자서는 무엇을 어떻게 해야 현재를 개선해야 하는지 파악하기 어렵습니다. 좀 더 나은 수준으로 향상하기 위해서는 무엇을 해야 하는지 가르칠 수 있는 코치를 고용하면 좋겠는데, 그렇게 하는 것은 비용이 많이 듭니다. 이럴 때 어떤 대안이
고객 성향 분석(Customer Propensity Analysis) : DIY & DIFM 접근 방법
고객의 데이터를 분석하여 고객 성향 및 선호도를 이해하고, 이를 활용해 마케팅 업무를 효율화하고자 하는 노력은 90년대 데이터베이스 마케팅, 2000년대 분석 CRM, 최근의 퍼포먼스, 그로스 마케팅까지 계속적으로 진화하고 있습니다. 멀티채널에서 쏟아지는 고객의 온/오프라인 데이터를 통합, 분석하여 마이크로 타겟팅 마케팅은 기본적으로 고객 성향 예측 모형(Customer Propensity Model)을 기반으로 수행되고 있습니다. 디지털채널을 중심으로
이젠 야구도 데이터로 배운다! (The Batting Lab)
야구에 데이터를 더한다면 어떤 효과가 일어날까요? 야구 실력도, 데이터 활용 능력도 향상시켜줄 어린이를 위한 데이터 리터러시 프로그램, SAS ‘배팅 랩’을 소개합니다. 전 세계적으로 7,000명 이상의 경영진을 대상으로 진행한 한 설문조사에 따르면 85%가 미래에는 데이터 활용 능력이 오늘날 컴퓨터 사용 능력만큼 더욱 중요해질 것[1]이라고 답했습니다. 반면, 48%의 어린이는 현재 교육 과정이 데이터