All Posts

Analytics
Gastbeitrag 0
Kundenverständnis mit Analytics steigern

Fazit: Wie Analytics und CEM gemeinsam den Weg zu loyalen Kunden weisen (Kundenverständnis) . Ein positives Kundenerlebnis ist heute eine selbstverständliche Erwartung der Verbraucher. Um einen Kunden zu begeistern und dadurch zu binden, sollte ein starkes, analytisch gestütztes CEM (Customer Experience Management) im Unternehmen etabliert werden, das konsequent weiterentwickelt wird.

Risk Management
Peter Plochan 0
Enterprise Model Risk Management: Eine ganzheitliche Sicht ist entscheidend!

Model Risk Management (MRM) ist im Grunde nichts Neues: Finanzinstitute nutzen seit Jahrzehnten Modelle für ihre Entscheidungsfindung. Seit Kurzem jedoch ist das MRM formalisierter und strenger. Regulatorische Anforderungen – zum Beispiel die gezielte Überprüfung interner Modelle (kurz: TRIM) der Europäischen Bankenaufsichtsbehörde (EBA) – nehmen Banken in die Pflicht, die Compliance

Analytics
5 Benefícios da implementação de sistemas de Business Analytics

Atualmente, os dados são um dos ativos mais importantes das organizações. As organizações reúnem diferentes tipos de dados que são posteriormente processados e analisados para uma melhor compreensão da evolução das necessidades dos seus clientes. Os termos Business Analytics e Business Intelligence  fazem parte da solução que ajuda as organizações a tomarem decisões baseadas

Analytics | Data Visualization
SAS Korea 0
데이터 시각화로 살펴본 ‘2018 국제 축구 대회’ 이모저모!

전 세계의 이목이 러시아에 향해 있습니다. 바로 2018년 국제 축구 대회 때문인데요. 오늘은 바로 이 국제 축구 대회에 대한 다양한 데이터를 시각화하고, 지난 대회 결과로부터 어떤 인사이트를 얻을 수 있는지 살펴보고자 합니다! 전 세계 축구팀들은 대회를 위해 얼마나 멀리 이동할까요? 데이터 시각화 리포트가 보이지 않으시면 클릭하세요. 위 보고서는 참가국들이 조별 리그 동안 얼마나 멀리

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
「Pipefitter」の応用 ~CNN(特徴抽出器)+機械学習(分類器)でCNNの欠点を補完

前回は、SASの「Pipefitter」の基本的な使用方法を紹介しました。続く今回は、基本内容を踏まえ、ひとつの応用例を紹介します。 SAS Viyaのディープラーニング手法の一つであるCNNを「特徴抽出器」として、決定木、勾配ブースティングなどを「分類器」として使用することで、データ数が多くないと精度が出ないCNNの欠点を、データ数が少なくても精度が出る「従来の機械学習手法」で補強するという方法が、画像解析の分野でも応用されています。 以下は、SAS Viyaに搭載のディープラーニング(CNN)で、ImageNetのデータを学習させ、そのモデルに以下の複数のイルカとキリンの画像をテストデータとして当てはめたモデルのpooling層で出力した特徴空間に決定木をかけている例です。 In [17]: te_img.show(8,4) 以下はCNNの構造の定義です。 Build a simple CNN model   In [18]: from dlpy import Model, Sequential from dlpy.layers import * from dlpy.applications import *   In [19]: model1 = Sequential(sess, model_table='Simple_CNN')   Input Layer   In [20]: model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means))   NOTE: Input

1 345 346 347 348 349 728