Tag: JPN Academic

Analytics | Students & Educators
0
SASによる因果推論:PSMATCHプロシジャによる傾向スコアマッチング

はじめに 因果効果の推定手法の1つである傾向スコアマッチング、およびSASでの実装方法について紹介します。傾向スコアマッチングのSASでの実装にあたっては、本記事ではSAS/STAT 14.2(SAS 9.4)で追加されましたPSMATCHプロシジャを使用します。因果推論の基本的な枠組みや傾向スコア・傾向スコアマッチングの統計的理論については、詳しく解説を行いませんので、そちらに関心がある方は書籍等を参考にしていただければ幸いです。 理想的なランダム化比較試験においては、ランダム化により治療群と対照群間で測定・未測定の交絡因子(confounders)の分布が期待的に等しくなるため、単純な群間比較によって治療(介入、曝露)の興味のあるアウトカムに対する効果を評価することが可能です。しかし、ランダム化が行われなかった実験研究や観察研究のデータから因果関係を見出そうとする場合には、一般に交絡(confounding)と呼ばれるという問題が生じます。これは簡単に述べると、治療群と対照群で集団の特性が異なることで2つの集団が比較可能ではない状況、治療群と対照群でのアウトカムの違いが治療だけではなく集団の特性の違いにも依存する状況を意味しています。つまり、ランダム化が行われなかった実験研究や観察研究のデータから因果効果を推定する際には、交絡を十分に制御した上で群間比較を行う必要があり、世間一般で因果効果の推定手法と呼ばれるものは、交絡を調整方法する方法だと認識していただいてよいかと思います。因果効果の推定手法は回帰や層別化、標準化など様々なものがありますが、本記事ではマッチング法に注目します。マッチング法は、治療群と対照群から類似した特徴を持つ被験者をペアとし(マッチングさせ)、マッチした対象集団において治療を受けた群と受けなかった群を比較するという方法です。  ただ、一言にマッチング法と言っても複数の交絡因子(共変量)の情報をそのまま用いる「共変量マッチング」と、共変量の情報を傾向スコアという一次元の情報に落とし込んだ上でマッチングを行う「傾向スコアマッチング」という2つの方法に大きく分かれます。初学者にとっては前者の方がより直感的な方法かと思いますが、共変量が高次元である場合や変数のカテゴリ数が多い場合にはその実施が困難になります。そのような場合にしばしば用いられるのが後者の傾向スコアマッチングです。マッチングには、治療群と対照群の構成比率やマッチング方法など様々なオプションがありますが、傾向スコアの分布が同じ(治療群と対照群が交換可能)であるmatched populationを作成するというのが共通の考え方です。また、傾向スコアマッチングの実施手順は連続である単一の共変量を用いた共変量マッチングと同様であり、大きくは以下のような手順となります。 【傾向スコアマッチング法のステップ】 共変量の特定、測定 傾向スコアのモデル指定、傾向スコアの推定 マッチングアルゴリズムの決定、マッチングの実施 マッチングした対象者で構成された集団(matched population)における治療群と対照群での交絡因子の分布評価 4.で評価した共変量が不均衡である場合には2.に戻る 群間比較の実施 推定結果の解釈   記法と仮定 記法 以下の記法の下で傾向スコアマッチングに関する議論を行います。アルファベットの大文字は確率変数を、小文字はその実数値を意味するものとします。なお、以降でボ-ルド体としている場合は単一の変数ではなくベクトルであることを意味しているものとします。 A:二値の治療変数 Y:観察されるアウトカム Ya:潜在アウトカム X:共変量(一般にはベクトル) 仮定 本記事では以下の識別可能条件を仮定します。理想的なランダム化比較試験においては研究デザインによってその成立が認められますが、観察研究ではあくまで”仮定”となります。つまり、その成立を認めることが妥当であるかどうかの議論が別途必要となることにご注意ください。また、各条件の詳細や意図する内容については本記事では取り扱いませんので、他の記事や書籍等をご参照ください。 【識別可能条件 (Identifiability assumptions) 】 一致性 (consistency) If Ai = a, then YiA = Yia = Yi  特にAが二値であるとき、   Yi = AYia=1 + (1-A) Yia=0   条件付き交換可能性 (conditional

Analytics
0
本当の原因とは何か:操作変数法(Instrumental variable mrthods)①

はじめに 統計的因果推論における1つの達成目標として「介入を行った場合には行わなかった場合と比較してどの程度結果(アウトカム)が変わったのか」という因果的な疑問に対し、定量的に答えることが挙げられるかと思います。以前のコラムでは、こういった因果効果を数学的・統計学的に議論していくために潜在アウトカムという考え方を導入し、その値を推定していくために重要ないくつかの仮定について紹介を行いました。この因果効果の推定の手法には様々なものがありますが、次回以降のコラムで紹介をする交絡調整に基づく因果効果の推定手法 (e.g., 回帰、層別化、傾向スコアを用いた手法)では、興味のある因果効果の推定値をバイアスなく得るためには、交絡や選択バイアスの調整に必要な全ての変数が完全に特定・測定されているという仮定が成立している必要があります。この仮定はデータからその成立を検証することはできず、もしもいずれかが成立しない場合には得られる推定値にはバイアスが含まれ、いわゆる残差交絡 (redidual confounding) が存在する状況となります。現実的に仮定が全て厳密に成立するケースというのは比較的稀ですので、そのような意味では大部分の研究結果(特に観察研究)・解析結果には一定のバイアスが含まれているとみることもできるかと思います。ただし交絡調整に基づく手法がダメだと言っているわけではなく、調整が不完全ながらもバイアスを軽減することは十分に意義があり、また最終的に結果に含まれるであろうバイアスの大きさとその方向(過大評価 or 過小評価)を議論することが重要かと思います。 今回のコラムでは、操作変数法(instrumental variable methods, IV methods)という因果効果の推定手法について紹介と解説を行っていきます。この推定手法は、操作変数 (instrumental variable, instrument) と呼ばれるいくつかの条件を満たす特殊な変数を利用することで因果効果の推定を行う手法になります。医学分野では、先行研究の結果(e.g., 医学的な知見)から交絡因子となりうる変数の特定・測定が比較的容易であることから先ほど言及した交絡調整に基づく推定手法が用いられるケースが比較的多いですが、経済学や社会科学といった分野ではそもそもの特定が出来なかったり、仮に交絡因子であろうと見込んだ場合であってもそれを測定することができないケースが非常に多く存在します。そのため交絡調整に基づかない手法である操作変数法というのは経済学や社会科学において、特にその理論が発展してきたという歴史的な背景があります。なお詳細については後述しますが、操作変数法は交絡因子の測定を必要としないというメリットもある一方、いくつかの検証不可能な仮定に基づく手法です。したがって、解析を行う研究・データにおいて因果効果の推定のために要求される仮定の成立を認めることがどの程度妥当であるかの議論が他の手法と同様に必要であることにご注意ください。   操作変数の3条件 操作変数法では、ある介入AのアウトカムYに対する因果効果を推定するために以下の3つの条件を満たす変数Zを利用します。この変数Zは操作変数 (instrumental variable, instrument) と呼ばれます。 操作変数の3条件 (Theree instrumental conditions)  Z is associated with A ZはAと関連する Z does not affect Y except through its potential effect on Y ZはYに対してAを介した以外の効果を持たない Z

Analytics | Students & Educators
イベントレポート: 東京理科大学×SAS 合同シンポジウム

社会におけるデータ活用の拡大に伴い、データ活用人材の需要はますます大きくなってきています。東京理科大学データサイエンスセンターとSAS Institute Japan 株式会社は、データサイエンス人材の教育とキャリアについての知見を深めるため、2022年12月21日(水)に合同でシンポジウムを開催しました。本記事では、このイベントの様子をご紹介したいと思います。 シンポジウムの開会にあたり、東京理科大学 副学長 坂田 英明 様、SAS Institute Japan 株式会社 営業統括本部長 宇野 林之からご挨拶がありました。坂田副学長は、2031年に150周年を迎える東京理科大学が掲げるTUS Vision 150のなかで、データサイエンス教育に重点を置いていることに触れ、2019年に設置された東京理科大学データサイエンスセンターが、データサイエンスの応用分野創造と人材育成を進めていることを紹介しました。SASの宇野からは、40年以上の間、アナリティクスを専業としてきたSASの歴史に触れながら、リソース不足で実りが少なかった第二次AIブームと違い、昨今の第三次AIブームは豊富な計算リソースを背景に社会に浸透しており、特にビジネスの世界では、データドリブン経営から業務のディシジョンのサポートまで、データサイエンスが幅広く活用されていることを紹介しました。両者ともにデータ活用人材の不足を課題に挙げ、本シンポジウムでの議論に期待を寄せました。 第1部:東京理科大学におけるデータサイエンス教育 第1部では、東京理科大学のデータサイエンス教育の紹介と、そこで学んだ学生からの研究発表が行われました。 まず、データサイエンスセンター長 矢部 博 様から、データサイエンス教育の取り組みについて紹介がありました。理系の総合大学である東京理科大学では、各学部でデータを活用した研究・教育がされてきましたが、学長直下の組織として設置されたデータサイエンスセンターが横串となり、各学部や教育推進機構、研究推進機構、産学連携機構と連携しながら、データサイエンス教育・研究のハブとしての役割を果たしています。 政府はAI戦略2019のなかで年間50万人のリテラシーレベルの人材と年間25万人の応用基礎レベルの人材の育成を目標に掲げていますが、東京理科大学では、既に2019 年度から独自の教育プログラムを展開しています。まず、全学部生が対象のデータサイエンス教育プログラム[基礎]は、数学、統計学、情報学、データサイエンス、その他の授業から20単位をB評価以上で取得することで、認証書が授与されます。大学院生が対象のデータサイエンス教育プログラム[専門]では、数理コース、ビジネスコース、人工知能コース、医薬コース、機械学習コース、医療統計コース、Informaticsコースの各コースが設定する科目から8単位をB評価以上で取得することを要件としており、高度な知識と技能を持った学生を認証しています。 また、SASとの共同認定プログラムであるSAS Academic Specializationでは、SASを活用したデータ分析を実践する授業の6単位を取得することで、SASスキルと統計解析の知識を認定します。特に、SASソフトウェアを用いた研究課題や実践課題に取り組み、論文を提出し、審査に合格することが条件となっています。このような教育プログラムをデータサイエンスセンターが提供することで、各学部での一般・専門教育と並行してデータサイエンス人材の育成を推進しています。 次に、理学部第二部数学科 教授 伊藤 弘道 様から、社会人履修証明プログラムについて紹介がありました。東京理科大学の理学部第二部は、日本唯一の夜間理学部として、特に理科・数学を中心とした学び直しの機会を提供してきました。現在、社会人学生の割合は1割程度で、教員免許の取得を目指す学生も多く在籍しています。学部の課程と並行して履修証明プログラムを2020年度から開始しています。コースの種類としては、SAS認定コース、データサイエンスコース、数理情報コース、統計学入門コース、数理モデリングコース、数学リテラシーコース、微分幾何入門コースがあり、さまざまなスキルや知識を持って社会で活躍できる人材を育成しようとしています。 続いて、SAS教育の実践を含む教育の一つとして、大学院講義「カテゴリカルデータ解析」に関し、工学部情報工学科 教授 寒水 孝司 様より紹介がありました。この授業は理論と演習から構成されます。演習パートについて、企業で活躍する専門家が講師として招聘され、担当しています。講師の統計解析への知見、SASプログラミングの専門的な知識や技術を吸収しようと、学生は理論の学習と演習課題に交互に取り組んでいます。特にこの授業では、クロス集計とその指標の推定から、交絡のあるデータを扱うための技術を習得します。 学生の研究発表 第1部の最後に、4組の学生からデータ分析を活用した研究発表がありました。独自に設定した課題について、大学のプログラムで提供されているデータや自身で収集したデータを用いた分析結果を発表しました。みなさん、基礎分析をしっかり行い、データの傾向を掴もうとしていたことが印象的でした。将来の夢の発表もあり、スキルを磨いて夢を実現されることを期待しています。 第2部:ビジネスにおけるデータサイエンス人材の活用 第2部では、ビジネスにおけるデータ活用事例およびデータ活用人材のニーズやキャリアについて、講演がありました。 採用市場におけるデータ活用人材のニーズ まず、株式会社マイナビ 就職情報事業本部 マイナビ編集長 高橋 誠人 様より、データ活用人材の採用市場におけるニーズについて紹介されました。株式会社マイナビは、就職活動支援サービスの提供のみではなく、大学や企業と連携してデータ活用人材の育成の支援を行っています。特に、2024年卒業学生向けの新卒就職活動サイト「マイナビ2024」からは、「DX(デジタル・トランスフォーメーション)がわかる超基礎講座」というe-learningを提供し、IT人材のキャリア形成を支援しています。 講演では、経済産業省の「新産業構造ビジョン」や情報処理推進機構の「DX白書2021」などからデータを引用しながら、IT人材のニーズについて論じました。ほぼすべての分野においてIT技術を核とした革新が期待されているなか、IT人材の需要は高まることが予測されています。米国ではIT人材不足が解消されてきている一方、日本国内のIT人材は質・量ともにまだまだ不足感があります。プロダクトマネージャー、ビジネスデザイナー、テックリード、データサイエンティストと、さまざまな側面のデータ活用人材が不足していると感じている企業が半数以上です。(一方で、「自社には必要ない」と考えている企業も2割程度あるのも問題かもしれません。)2030年には、中位シナリオで45万人のIT人材が不足すると予測されています。マイナビ社の調査結果を見ると、新卒の就職市場は全体的に堅調であるなかで、情報系学生の就職先が製造・ソフトウェア・通信分野に偏っていることが問題であるように思われます。転職市場では、全体と比較してIT・通信・インターネットの分野において、転職による給与の上昇が期待できるようです。最近では、経験者を募集する割合が減ってきていることも人材不足を反映しているかもしれません。

1 2 3 4 25