Tag: demand forecasting

Advanced Analytics | Analytics | Artificial Intelligence
小林 泉 0
守りの需要予測から、攻めの収益最大化への転換をするために

データサイエンスの使いどころ・・・攻めと守りの圧倒的な違い 以前のブログで、データ活用における攻めと守りについてお話しました。今回は小売業を例に多くのデータ活用プロジェクトが陥りやすい罠と、真の目的達成のための方法についてご紹介します。 小売業の目的はもちろん他の業種企業と変わらず、収益の最大化です。昨今データ分析を武器として売り上げの最大化、コストの削減、業務プロセスの生産性向上を目指す企業が増えてきています。時には、データサイエンティストが、データサイエンスを駆使してプロジェクトを実行しているケースもあるでしょう。 ここで、今一度現在取り組んでいる、またはこれから取り組もうとしているデータサイエンスやAI活用のプロジェクトがどんな利益を自社にもたらすのかを改めて考えてみましょう。昨今、需要予測についての相談が非常に多いので、ここでは需要予測について考えてみます。 弊社にご相談いただくケースの中で、少なくない企業が、需要予測をこのブログで言うところの「守りの意思決定」としてとらえています。多くのケースで、過去の実績をベースに将来の需要を予測することで、在庫過多や欠品を減らそうというプロジェクトに投資をしていたり、しようとしています。言い換えると、過去の実績を学習データとして、将来を予測するモデルを構築し、ひとつの将来の需要予測を作成し、それを在庫を加味したうえで、発注につなげています。 手段が目的化することで見失う可能性のある本来の目的とは 非常に典型的なAI活用、データサイエンス活用かと思いますが、実は、「AIで予測」、「機械学習で予測」といった言葉で最新のデータ活用をしているかのような錯覚に陥っているケースが見受けられます。数十年前から行われており、昨今でも同様に行われている、機械学習を用いた典型的な需要予測は、「守り」です。すなわち、どんなに多くの種類のデータを使うかどうかにかかわらず、過去の傾向が未来も続くという前提のもとに予測モデルを作成している場合には、あらかじめ定義した前提・業務プロセスの制約の下で、機会損失を最小化するために予測精度をあげているにすぎません。 つまり、そのような前提での需要予測は、小売業の収益向上という観点では、期待効果が限定的であるということです。では、最終的な収益の最大化を実現するには、何をすべきでしょうか? 収益を向上させるためにはもちろんより多くの商品を売ることにほかなりません。より多くの商品を売るためには当然、顧客の購買心理における購買機会に対して販売を最大化する必要があります。あるいは、顧客の購買心理そのものを潜在的なものから顕在化したものにすることも必要でしょう。つまり、販売機会を最大限に活用するということは、店舗中心ではなく、顧客中心に考えるということです。 小売業における攻めのデータ活用の1つは、品ぞろえの最適化 このように、顧客中心に考えることで初めて最適な品揃えの仮説検証のサイクルが可能となります。過去のデータは、単に過去の企業活動の結果であり、世の中の「真理~ここでは顧客の本当の購買思考」を表しているわけではありません。真理への到達は、仮説検証ベースの実験によってのみ可能になります。わかりやすく言うと皆さんよくご存じのABテストです。このような実験により、品ぞろえを最適化することで、販売機会を最大化することが可能なります。そのプロセスと並行して、オペレーショナルな需要予測を実践していくことが重要となります。 需要予測と品ぞろえ最適化の進化 昨今、AIブーム、データサイエンティストブーム、人手不足や働き方改革といったトレンドの中で、従来データ活用に投資してこなかった小売業においても投資が進んでいます。しかし多くのケースでこれまで述べてきたような守りのデータ活用にとどまっていたり、古くから行われている方法や手法にとどまっているケースが見受けられます。歴史から学ぶことで、無用なPOCや効率の悪い投資を避けることができます。今、自社で行っていることがこの歴史の中でどこに位置しているかを考えてみることで、投資の効率性の向上に是非役立てていただければと思います。 小売業におけるデータ活用のROI最大化にむけたフレームワーク SASでは長年、小売業や消費財メーカのお客様とともにお客様のビジネスの課題解決に取り組んできました。その過程で、小売業・消費財メーカー企業内の個々の業務プロセスを個別最適するのではなく、それら個々の業務プロセスを統合した、エンタープライズな意思決定フレームワークが重要であるとの結論に至っています。AIやデータサイエンスという手段を活用し、データドリブンな意思決定のための投資対効果を最大化するための羅針盤としてご活用いただければと思います。

Advanced Analytics | Analytics | Cloud
Charlie Chase 0
6 advantages of using software as a service for demand planning

Getting demand right – or getting it wrong – can have a significant impact on customer perceptions of your brand, particularly in this age of instant gratification. The need for agile, accurate demand planning has never been greater. Predicting forward-looking demand signals and shifting consumer demand patterns to recommend balanced, profitable commercial

Advanced Analytics | Analytics | Artificial Intelligence | Cloud
Charlie Chase 0
6 ways retailers can rebalance inventories as consumers shift spending

Consumers are pulling back and shifting their purchases in the wake of inflationary pressures caused by high prices for fuel, freight costs, consumer goods and nonessential products. Demand is shifting faster than many retailers and consumer goods companies anticipated. Inflation continues to rise forcing consumer spending to shift once again

Analytics | Customer Intelligence | Data Visualization | Marketing
Charlie Chase 0
How CDP technologies offer sales and marketing teams powerful insights

In today's environment, data is exceedingly important but also increasingly harder to get and manage. A reliable customer data platform (CDP) can provide significant value to retail and consumer packaged goods (CPG) companies. Customer data platforms are used to consolidate and integrate customer and consumer data into a single data source. CDP

Advanced Analytics | Analytics | Cloud | Machine Learning
Charlie Chase 0
Can demand planning save your supply chain? Find out with this free trial

The past 20 months of disruptions caused by COVID-19 have been a wake-up call for retailers and consumer goods companies. Unpredictable market trends have caused havoc with categories, brands and products making it harder to predict supply requirements. All of these changes have given rise to the need for consumption

Advanced Analytics | Analytics | Artificial Intelligence | Cloud | Internet of Things | Machine Learning
Charlie Chase 0
Is your demand management process stuck in the 1990s?

Demand management concepts are now over 30 years old. The first use of the term "demand management" surfaced in the commercial sector in the late 1980s and early 1990s. Before that, the focus was on a more siloed approach to demand forecasting and planning that was manual and used simple

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Data Visualization
Charlie Chase 0
SAS and C.H. Robinson are rewriting the rules of transportation planning and management

What if you had a technology solution that creates a real-time link between the customer demand signal and what's happening on the ground? What if plans that are being steered centrally could  finally be connected to every shipping lane, while simultaneously, creating cost saving carrier adjustments? The first-of-its kind integration

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Is short-term demand sensing a key component of your digital supply chain transformation?

Depending on who you talk to, you'll get varying definitions and opinions regarding demand sensing. Anything from sensing short-range replenishment based on sales orders, to the manual blending of point-of-sales (POS) data and shipments. But a key component for retailers and CPG companies is accurately forecasting short-term consumer demand to

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
How do I explain a flat-line forecast to senior management?

How do you explain flat-line forecasts to senior management? Or, do you just make manual overrides to adjust the forecast?    When there is no detectable trend or seasonality associated with your demand history, or something has disrupted the trend and/or seasonality, simple time series methods (i.e. naïve and simple

Internet of Things | Machine Learning
Charlie Chase 0
Is quick response forecasting a reality or just another buzzword?

“Quick response forecasting (QRF) techniques are forecasting processes that can incorporate information quickly enough to act upon by agile supply chains” explained Dr. Larry Lapide, in a recent Journal of Business Forecasting column. The concept of QRF is based on updating demand forecasts to reflect real and rapid changes in demand, both

Advanced Analytics | Machine Learning
Charlie Chase 0
Is demand sensing and shaping a key component of your company’s digital supply chain transformation?

Depending on who you speak with you will get varying definitions and opinions regarding demand sensing and shaping from sensing short-range replenishment based on sales orders to manual blending of point-of-sales (POS) data and shipments.        Most companies think that they are sensing demand when in fact they are

Advanced Analytics | Data Management | Internet of Things
Charlie Chase 0
Omnichannel is changing the way we view demand planning

Omnichannel Analytics are helping companies uncover patterns in big data to improve the customer experience.  Using those insights, companies can anticipate what consumers are planning to purchase and influence that purchase in real time.     Companies are experiencing unprecedented complexity as they look for growth and market opportunities. Their product portfolios are

Data Management | Machine Learning
Charlie Chase 0
Machine learning changes the way we forecast in retail and CPG

Machine learning is taking a significant role in many big data initiatives today. Large retailers and consumer packaged goods (CPG) companies are using machine learning combined with predictive analytics to help them enhance consumer engagement and create more accurate demand forecasts as they expand into new sales channels like the

Nilmadhab Mandal 0
Data massaging adds error, just forecast!

In a recent meeting, the CIO of a leading commercial automotive company’s shared his experience of high complexity in managing forecasting data. I was not surprised. Often demand planners complain about managing forecasting data. I can relate to where there are coming from. It’s due to the approach prescribed by their legacy

1 2