All Posts
What can you learn about wildfires when you provide a room full of analysts with 7 years of US wildfire data and the tools they need to analyze it? A lot. At a recent data dive, we split 35 data scientists into 9 teams, provided multiple data sets containing information
필자는 데이터 전문가와 엔터프라이즈 시스템 컨설턴트로서 오랜 경력을 쌓아왔으며, 저자와 대학 교수로서 교육 활동도 진행하고 있습니다. 그 동안 200여 개의 개인, 50개 이상의 그룹을 위한 데이터 분석 프로젝트를 감독하면서 수많은 분석 프랙티스를 연구해왔는데요. 중요한 한 가지는 분석 프로젝트를 성공적으로 시작하기 위한 단 하나의 청사진은 존재하지 않는다는 것입니다. 하지만 다양한 성공 또는 실패
In a recent article about nonlinear least squares, I wrote, "you can often fit one model and use the ESTIMATE statement to estimate the parameters in a different parameterization." This article expands on that statement. It shows how to fit a model for one set of parameters and use the
El tiempo sigue corriendo y las empresas aseguradoras de diferentes latitudes se están preparando para cumplir con un nuevo estándar contable que entrará en vigor en enero de 2021: IFRS 17. International Financial Reporting Standard (IFRS) 17 establece los principios para el reconocimiento, medición, presentación y revelación de los contratos
Para gestionar apropiadamente una cartera de créditos y realizar una colocación adecuada de los recursos, las entidades financieras se ven en la necesidad de medir correctamente el riesgo de crédito. Particularmente en Argentina, la comunicación “A” 5398 del Banco Central de la República Argentina establece los lineamientos para la gestión
Deep learning has taken off because organizations of all sizes are capturing a greater variety of data and can mine bigger data, including unstructured data. It’s not just large companies like Amazon, SAS and Google that have access to big data. It’s everywhere. Deep learning needs big data, and now
What if you could automatically detect supply chain anomalies as they happen, or even predict them in advance? You'd be able to take timely corrective action and help maximize revenue, margins, customer satisfaction and shareholder value. There's no question: Supply chain planning and execution is complex. From design and sourcing, to
"Imagine being told to part with a dear friend or part of your identity. Imagine being told to discard something that results in intense feelings of anxiety, sorrow, or guilt. That’s how it can feel to someone with hoarding issues. " Dr. Annette Perot is a licensed psychologist and has
Oh, networking. The buzzword of Ted Talks, academia, and career resources everywhere; networking is often touted as the golden ticket to progressing your career. The importance of networking can’t be overstated, but let’s be honest: networking can be, well, awkward. If you’re someone who feels uncomfortable, unsure or just plain
Think that the company has let up in the last two years? Think again.
Krankenversicherung und neue Technologien – geht das zusammen? Auf alle Fälle! Und das User-Group-Treffen „Analytik in der Krankenversicherung“, das kürzlich in Leipzig stattfand, hat es unter Beweis gestellt. Diese von den Gesundheitsforen Leipzig ausgerichtete Veranstaltung ist ein sehr informatives Forum, auf dem sich analytische Fachexperten aus der Gesetzlichen Krankenversicherung (GKV)
There are several ways to use SAS to get the unique values for a data variable. In Base SAS, you can use the TABLES statement in PROC FREQ to generate a table of unique values (and the counts). You can also use the DISTINCT function in PROC SQL to get
En los últimos 25 años las ciudades colombianas han venido expandiendo su territorio y han aumentado su demanda de recursos naturales y servicios vitales. Esto lo sustentan las cifras del DANE que muestran que en 2017, 76% de la población colombiana se concentró en ciudades frente a un 24% que
Note: Today’s utility industry is in upheaval. All of the assumptions the business has run on have been turned on their heads. This post is the first in a three-part series looking at how analytics are helping utilities navigate this challenging landscape and find new opportunities for improvements in operations,
近年、クラウドファーストを唱える企業が増加し、データ分析のために、クラウド上に展開されている分析サービスを活用したり、クラウド上に独自に分析アプリケーションを構築するケースも増えています。 しかし、クラウド上にある分析サービスやアプリケーションで分析する対象のデータは、オンプレミス上に蓄積されているケースが大半であり、クラウドからこれらのデータにアクセスできるようにするための作業や環境設定は面倒かつ非効率で、膨大なデータをクラウドとやり取りするなどの運用コストも大きく、かつセキュリティのリスク回避も考慮しなければなりません。 こうした課題を解決するために、SAS ViyaではSAS Cloud Data Exchange (CDE)を提供しています。 SAS Cloud Data Exchange (CDE) は、プライベート/パプリックのクラウド上にあるアプリケーション(=SAS Viya)からファイヤーウォールの後ろにある、顧客のオンプレミス上にあるデータに安全かつ確実にアクセスし、大量のデータをクラウドへ高速に転送することを可能とするデータ接続機能です。 CDEは、SAS Viyaのセルフサービス・データ準備向け製品であるSAS Data Preparationに含まれる機能です。 CDEを使用すれば、クラウド上にあるSAS Viyaからオンプレミス上にある様々なデータソース(Oracle, Teradata, Hadoop etc.)へ最小限の手順で容易かつセキュアにアクセスすることが可能になります。 サポート対象データソース: ・DB2, ODBC, Apache Hive, Oracle, Redshift, SQL Server, Postgres, SAP HANA, Teradata, SAS Data Sets CDEでは、最小限の一つのポート(Https port)を使用し、オンプレミス上にあるデータソースにアクセスするための資格情報(ユーザーID /パスワード)も保護された領域に格納し、使用するため、安全性が高められています。 また、クラウド上のSAS Viyaが複数のワーカーノードで分散構成されている場合には、オンプレミス上のデータを並列で高速にSAS Viya環境へロードすることが可能です。 利用手順概要は以下の通りです。 オンプレミス側にSAS Data Agent