Data Management

Blend, cleanse and prepare data for analytics, reporting or data modernization efforts

Data Management
Bill Davis 0
MapReduce vs. Apache Spark vs. SQL: Your questions answered here and at #StrataHadoop

As the big data era continues to evolve, Hadoop remains the workhorse for distributed computing environments. MapReduce has been the dominant workload in Hadoop, but Spark -- due to its superior in-memory performance -- is seeing rapid acceptance and growing adoption. As the Hadoop ecosystem matures, users need the flexibility to use either traditional MapReduce

Data Management
David Loshin 0
Big data quality with continuations

I've been doing some investigation into Apache Spark, and I'm particularly intrigued by the concept of the resilient distributed dataset, or RDD. According to the Apache Spark website, an RDD is “a fault-tolerant collection of elements that can be operated on in parallel.” Two aspects of the RDD are particularly

Data Management
Stuart Rose 0
Big data – game changer for insurers.

A recent survey by Capgemini found that 78% of insurance executive interviewed cited big data analytics as the disruptive force that will have the biggest impact on the insurance industry. That’s the good news. The bad news is that unfortunately traditional data management strategies do not scale to effectively govern

Data Management
Matthew Magne 0
Simplify, secure and speed data access with data virtualization

Data virtualization simplifies increasingly complex data architectures Every few months, another vendor claims one environment will replace all others. We know better. What usually happens is an elongated state of coexistence between traditional technology and the newer, sometimes disruptive one. Eventually, one technology sinks into obsolescence, but it usually takes much longer than we expect. Think of

1 22 23 24 25 26 34

Back to Top