"Two weeks to go," Santa said to himself, with millions of toys stacked up on the shelves. Each year worry hit at the same time – "How do I get the right toy to the right child without losing my mind?" Though Old St. Nick didn't have a computer science degree, deep down
Tag: data quality
During a data quality assessment, one of my clients discovered that a large chunk of data that ultimately fed into their business analytics engine was sourced externally. After examining the contracts surrounding this data, I found that 100% of it failed to possess service-level agreements (SLAs) for the quality of
Historically, before data was managed it was moved to a central location. For a long time that central location was the staging area for an enterprise data warehouse (EDW). While EDWs and their staging areas are still in use – especially for structured, transactional and internally generated data – big
Data quality initiatives challenge organizations because the discipline encompasses so many issues, approaches and tools. Across the board, there are four main activity areas – or pillars – that underlie any successful data quality initiative. Let’s look at what each pillar means, then consider the benefits SAS Data Management brings
Digitalisierung, Big Data, IoT, Smart Data – die Liste an Ansätzen, die den Klassiker „aus Daten mach Umsatz“ neu definieren wollen, wird länger und länger. An cleveren, schlüssigen und vielversprechenden Methoden mangelt es sicher nicht, ihnen allen gemein ist aber der mahnende Zeigefinger und ewige Spielverderber Datenqualität. Und wie das
Our world is now so awash in data that many organizations have an embarrassment of riches when it comes to available data to support operational, tactical and strategic activities of the enterprise. Such a data-rich environment is highly susceptible to poor-quality data. This is especially true when swimming in data lakes –
We often talk about full customer data visibility and the need for a “golden record” that provides a 360-degree view of the customer to enhance our customer-facing processes. The rationale is that by accumulating all the data about a customer (or, for that matter, any entity of interest) from multiple sources, you
Most enterprises employ multiple analytical models in their business intelligence applications and decision-making processes. These analytical models include descriptive analytics that help the organization understand what has happened and what is happening now, predictive analytics that determine the probability of what will happen next, and prescriptive analytics that focus on
In my prior posts about operational data governance, I've suggested the need to embed data validation as an integral component of any data integration application. In my last post, we looked at an example of using a data quality audit report to ensure fidelity of the data integration processes for
Data governance plays an integral role in many enterprise information initiatives, such as data quality, master data management and analytics. It requires coordinating a complex combination of factors, including executive sponsorship, funding, decision rights, arbitration of conflicting priorities, policy definition, policy implementation, data stewardship and change management. With so much overhead involved in
Data integration teams often find themselves in the middle of discussions where the quality of their data outputs are called into question. Without proper governance procedures in place, though, it's hard to address these accusations in a reasonable way. Here's why.
Data governance has been the topic of many of the recent posts here on the Data Roundtable. And rightfully so, since data governance plays such an integral role in the success of many enterprise information initiatives – such as data quality, master data management and analytics. These posts can help you prepare for discussing
Welcome to the 1st practical step for tackling auto insurance fraud with analytics. It is obvious why our first stop relates with data, the idiom “the devil is in the details” can easily be applied in the insurance fraud sector as “the devil is in the data”. This article analyses
.@philsimon on the need to adopt agile methodologies for data prep and analytics.
Lately I've been binge-watching a lot of police procedural television shows. The standard format for almost every episode is the same. It starts with the commission or discovery of a crime, followed by forensic investigation of the crime scene, analysis of the collected evidence, and interviews or interrogations with potential suspects. It ends
Critical business applications depend on the enterprise creating and maintaining high-quality data. So, whenever new data is received – especially from a new source – it’s great when that source can provide data without defects or other data quality issues. The recent rise in self-service data preparation options has definitely improved the quality of
Hadoop has driven an enormous amount of data analytics activity lately. And this poses a problem for many practitioners coming from the traditional relational database management system (RDBMS) world. Hadoop is well known for having lots of variety in the structure of data it stores and processes. But it's fair to
In my last post, I talked about how data still needs to be cleaned up – and data strategy still needs to be re-evaluated – as we start to work with nontraditional databases and other new technologies. There are lots of ways to use these new platforms (like Hadoop). For example, many
If your enterprise is working with Hadoop, MongoDB or other nontraditional databases, then you need to evaluate your data strategy. A data strategy must adapt to current data trends based on business requirements. So am I still the clean-up woman? The answer is YES! I still work on the quality of the data.
The demand for data preparation solutions is at an all-time high, and it's primarily driven by the demand for self-service analytics. Ten years ago, if you were a business leader that wanted to get more in-depth information on a particular KPI, you would typically issue a reporting request to IT
In DataFlux Data Management Studio, the predominate component of the SAS Data Quality bundle, the data quality nodes in a data job use definitions from something called the SAS Quality Knowledge Base (QKB). The QKB supports over 25 languages and provides a set of pre-built rules, definitions and reference data
At this stage, our organization has defined business objectives for Data Governance programme and shares business term definitions which it uses. This logical area of data and information management has been supplemented with a bridge to technical metadata – in the previous step we obtained one place, which combines the
Auditability and data quality are two of the most important demands on a data warehouse. Why? Because reliable data processes ensure the accuracy of your analytical applications and statistical reports. Using a standard data model enhances auditability and data quality of your data warehouse implementation for business analytics.
At some point, your business or IT leaders will decide – enough is enough; we can't live with the performance, functionality or cost of the current application landscape. Perhaps your financial services employer wants to offer mobile services, but building modern apps via the old mainframe architecture is impractical and a replacement
Das „Recht auf Vergessen“ hat nichts mit der Demenzerkrankung Alzheimer tun und betrifft auch nicht nur Personen im fortgeschrittenen Alter. Das „Recht auf Vergessen“ und „Portabilität“ bezeichnen Rechte im Rahmen der neuen europäischen Datenschutzverordnung, die nach vier Jahren Arbeit die nun doch schon 20 Jahren alte Verordnung ablöst, und die
The “big” part of big data is about enabling insights that were previously indiscernible. It's about uncovering small differences that make a big difference in domains as widespread as health care, public health, marketing and business process optimization, law enforcement and cybersecurity – and even the detection of new subatomic particles.
.@philsimon on whether organizations need MDM to gather valuable insights about their customers.
Master data management (MDM) is distinct from other data management disciplines due to its primary focus on giving the enterprise a single view of the master data that represents key business entities, such as parties, products, locations and assets. MDM achieves this by standardizing, matching and consolidating common data elements across traditional and big
Single view of customer. It's a noble goal, not unlike the search for the Holy Grail – fraught with peril as you progress down the path of your data journey. If you're a hotelier, it can improve your customer's experience by providing the information from the casinos and the spa at check-in to better meet your
Na tym etapie nasza organizacja posiada określone dla programu Data Governance cele biznesowe oraz zarządza i współdzieli definicje pojęć biznesowych, którymi się posługuje. Ten logiczny obszar zarządzania danymi i informacją uzupełniony został o pomost do metadanych technicznych - w poprzednim kroku uzyskaliśmy jedno miejsce łączące informacje o technicznym przepływie danych w organizacji