All Posts
The Europe-wide PSD2 implementation deadline will fall on 14 September. In the UK, it has now been confirmed that the official compliance deadline for the Secure Customer Authentication section of the regulation will be pushed out to March 2021. UK companies must be able to demonstrate that they are moving
Today's blog is written by Paige Orlandi-Holmes, a Licensed Therapist providing mental health counseling services at Counseling Professionals PLLC, a private practice with offices in Cary and North Raleigh. The Work/Life Team is so thankful when therapists from the community volunteer to share their expertise with our employees and
If you use Microsoft Teams for collaboration, you should use it for operational messages too. You can use SAS to automate tailored notices to your Teams Channel.
September is National Yoga Month. As a personal trainer and yoga instructor, one of the most common reasons clients tell me they don’t do yoga is because they aren’t flexible. If you haven’t heard this before and even if you have, I’ll say it again: yoga is not about bending
There is a lot of excitement about AI, but somehow the reality is not really living up to the hype. At the moment, we don’t see enough real results or use cases emerging, even though everyone agrees that there is huge potential. I polled some of our experts to find
When you order an item online, the website often recommends other items based on your purchase. In fact, these kinds of "recommendation engines" contributed to the early success of companies like Amazon and Netflix. SAS uses a recommender engine to suggest articles on the SAS Support Communities. Although recommender engines
今回は「オペレーショナル・アナリティクス for Data Scientist」をメインテーマとしてご紹介します。企業で分析業務を行うデータサイエンティストの皆様はご存知の通り、モデルは開発しただけでは意味がありません。そのモデルを業務に実装(デプロイ)してはじめて、ビジネス課題を解決し、価値を創出することができるわけです。SASが長年蓄積してきたナレッジをご覧ください。 1.Using SAS® Viya® to Implement Custom SAS® Analytics in Python: A Cybersecurity Example この論文は、SASの分析機能により支えられているプロダクションレベルのアナリティクスソリューションを開発しようとしているデータサイエンティストを対象としています。本文では、SAS ViyaとCloud Analytics Service(CAS)に基づく、CASの構築基盤とサイバーセキュリティを説明します。そして、SASアナリティクスを本番環境でPythonで実装する方法を説明します。 2.What’s New in FCMP for SAS 9.4 and SAS Viya この論文では、下記いくつかポイントをメインとして議論していきます。まず、SASが提供しているFunctionコンパイラー(FCMP)の新しい特徴を紹介し、それから主にFCMPアクションセットを中心とし、リアルタイムアナリティクススコアリングコンテナ(ASTORE)とPythonのインテグレーションについても説明します。それらの説明により、SASの新しいテクノロジーに対し、更なる理解を頂けることを期待しています。 3.Influencer Marketing Analytics using SAS® Viya® この論文はSAS Viyaを使って、マーケティングアナリティクスを行う事例を紹介します。近来、マーケティングはますますインフルエンサーが大きな役割をしめるようになってきています。それらのインフルエンサーたちはソーシャルメディアのコンテンツ作成者であり、多くのフォロワーを持ち、人々の意見に影響を与え、購入を検討する人々にも影響を与えています。インフルエンサーマーケティングは、より伝統的なマーケティングチャンネルと同じようにコストがかかるため、企業にとって最も効果的なインフルエンサーを選択することは非常に重要です。 こういった背景において、この論文では、ソーシャルメディアで本当に影響力をもつ人、そしてその影響程度はなにかについて分析することを目指しています。ケーススタディは、感情面の影響を与えることに焦点を当てています。また、多くのフォロワーを持つインフルエンサーとその色んな投稿とアクティビティを分析します。実施するには、Pythonのライブラリとコードが使用されます。次に、彼らのアクティビティとネットワークを分析して、それらの影響範囲を分析します。これらの分析には、SAS Viyaのテキストおよびネットワーク分析機能が使用されます。データ収集ステップ(Python)はクライアントとしてJupyter Notebookを使用していますが、分析ステップは主にSAS Visual Text Analytics(Model Studio)とSAS Visual Analyticsを使用して行われています。 4.Take
Artificial Intelligence for Forecasting Can artificial intelligence augment and amplify our forecasting efforts? Will AI impact our forecasting roles and processes? Does AI deliver the automation and forecast accuracy we've been pursuing? These are the sorts of questions to be addressed by a stellar panel of world-class experts at the
Enterprise Open Analytics PlatformであるSAS Viyaでは、コーディングスキルを持たないビジネスアナリストやビジネスユーザーでも、Model Studioを使用し、機械学習のモデル、時系列予測のモデル、テキストマイニングのモデルをGUIベースの簡単マウス操作で作成することができるようになっています。モデル生成プロセスをグラフィカルなフロー図として描き、実行するだけです。このフロー図のことを「パイプライン」と呼んでいます。 これまで、ビジュアルパイプラインを用いた機械学習のモデル生成は紹介してきましたが、今回は、時系列予測の基本的な手順を紹介します。 Model Studioで時系列予測を実行する基本的な手順は以下の通りです。 ① プロジェクトの新規作成 ② 学習用の時系列データ内項目へ役割設定 ③ パイプラインの作成と実行 ④ 予測結果確認 ⑤ 予測値のオーバーライト(必要に応じて) ① プロジェクトの新規作成 SAS Viyaの統合GUIのホームページのメニューから「モデルの作成」を選択し、表示されるModel Studioの画面から「プロジェクトの新規作成」をクリックします。 「プロジェクトの新規作成」画面内で、プロジェクトの名前を入力し、モデルの種類(データマイニングと機械学習 / テキスト分析 / 予測)から「予測」を選択します。使用するパイプライン・テンプレートとして、デフォルトでは、「自動予測」が選択されていますが、必要に応じてテンプレートを変更することができます。 今回は、「自動予測」テンプレートを使用してみましょう。 学習用の時系列データを選択し、「保存」をクリックします。 すると、指定したデータソース内の変数リストが表示されます。 ② 学習用の時系列データ内項目へ役割設定 表示された「データ」タブ内で、変数ごとに右側画面内で役割を選択します。 ・注文日:時間 <-日付属性データ項目には自動的に“時間”役割が設定されます。 ・売上:従属 <-予測対象の項目 ・原価:独立 <-予測対象に影響を及ぼす項目 ・販売地域と製品ライン:BY変数 <-地域別や製品ライン別で予測結果を見ることができます。 「テーブルの表示」アイコンをクリックすると、データの中身を確認できます。 ご覧の通り、このデータは年月ごと、販売地域、製品ライン、製品ごとの売上や原価、などの情報を持つ時系列データです。 注. 今回使用するデータでは、時系列データとその属性データ(地域、製品ライン、製品)が一つにマージされているデータを使用していますが、時系列データと属性データをそれぞれ別データとして取り込むことも可能です。そうすれば、メモリーにロードするデータ量を削減することができます。 ③ パイプラインの作成と実行 役割を設定後、「パイプライン」タブをクリックすると、「自動予測」のパイプラインが表示されます。 右側画面には「自動予測」ノードのオプションが表示されています。ご覧の通り、自動予測では、ESM(指数平滑化)とARIMAの2つの手法で予測を実行し、その中から最良のモデルが使用されます。 必要に応じて、IDM(間欠需要モデル)とUCM(観測不能成分モデル)を追加することも可能です。 左画面内のノードリストから必要な機能をドラッグ操作でパイプラインへ追加することができます。 その中にはニューラルネットワークに基づく手法も用意されています。 今回は、「ナイーブモデル予測」を加えてみましょう。 左側のノードリスト内から「ナイーブモデル予測」をパイプラインの「データ」ノードにドラッグするだけです。 それでは、パイプラインの右上の「パイプラインの実行」ボタンをクリックして、このパイプラインを実行しましょう。 正常に完了するとすべてのノード上に緑のチェックマークが表示されます。 「データ」ノードのメニューから「時系列ビューア」を選択すると、 学習データ内容を時系列チャートで確認することができます。 役割にBY変数を指定した、販売地域と製品ラインで絞り込んで見ることもできます。 以下は、地域:Region2、製品ライン:Line3に絞り込んだチャートです。 ④ 予測結果確認
前回の記事で、Data for GoodのためにSASが提供するアプリ GatherIQをご紹介し、そのトピックの一つとして「教育」について取り上げました。今回は、「男女平等」と「健康」の2つのテーマについてGatherIQの提供するデータを基に取り上げてみたいと思います。 “男女平等” 皆さんは性別による格差を感じることはあるでしょうか。日本ではしばしば女性が男性と不平等に扱われていることで問題となりますが、それもここ数年でだいぶ変化してきたと私は感じております。今でも女性が差別に対し立ち上がることは難しくはありますが、以前であれば声を上げることですら不可能であったように思われます。日本、そして世界の性別によるギャップはどのような事態に置かれているのでしょうか。 日本と世界の違い GatherIQによると、性別におけるギャップの少ない国では、日本は世界的に見て111位であり、東南アジア及び太平洋周辺では下から4番目の順位です。これは、中国が99位、フィリピンが7位であることを踏まえると、日本は性別に関して非常に平等性が低いことは明らかです。 一方、性別におけるギャップがない国で上位に位置しているのはアイスランド、ノルウェー、フィンランドなどの北欧の国々でした。 しかし世界経済フォーラムは、未だ尚、世界のどの国も性格差のない平等な国とは言えないと述べます。 こちらのリンク先では、地域や指標を指定することで様々な順位分けを示してくれます。GatherIQではこのように、皆さんがデータや表のインタラクティブな操作が可能です。 データで見る「格差」 性別における格差は女性差別に関するものが主なようです。その分野は、教育、雇用、肩書き、暴力など、多岐にわたります。 雇用や肩書きでは、主要な役職や収入などの点で女性が男性に比べ平等に扱われていないと述べられています。 2017年における女性の平均収入は男性のおよそ半分である。CEOを務めるJohnという名の男性の数よりもCEOを務める女性の数は少ない。 暴力の点では性別における格差は更に深刻です。女性の内35%が虐待にあった経験があり、この中身としては、結婚を強制される、暴行を受けるという内容から人身売買という内容まで、多様です。 また、教育の現場においては家庭事情や学校での出来事により女性が教育を受けられない場合が多いようです。家の家事をしなければならない、学校でセクシュアルハラスメントを受けてから怖くて行けなくなった、などの理由が述べられていました。 平等による利益 では、男女平等であることによるメリットは何でしょうか。女性が平等に生きられる。これは確かに重要なことです。しかし、男女平等により得られる利益は女性だけに限ったものではないとGatherIQでは記載されています。男女平等に努める国は、武力に訴える傾向が低く、平和を維持しやすいようです。この傾向は、GDPの高い国や民主主義の国よりも高いと述べられています。また、こうした格差の少ない国では子供の人生における満足度や幸福度が非常に高く、そのため、男女平等である国は暴力による死者も少数です。 格差を生まないためにどう行動すればよいのだろうか? では、格差を少なくするにはどのようにすればよいのでしょうか。GatherIQには解決の糸口の一つが示されています。 “Boys and young men need to be educated and encouraged to be agents of change--to fight for the girls in their communities and prevent violence.” 「若い男性が主体的に変化を起こすことができるように教育し、勇気付けることが必要である。―彼らがコミュニティの中で女性のために戦い、暴力を防げるようになるために。」 私たちができることは、これからの世代に、今までの歴史や努力を伝えること、そして人類の発展のために男女平等が重要であると教えていくことではないか、と感じます。 “健康” 2つ目のテーマとして、健康についてお話をします。長く生きていくために、健康は不可欠な要素でしょう。GatherIQによると、健康の指標となりうる平均寿命の長い国では、健康な人が貢献することでより発展しやすいと言われています。
Das Thema Industrie 4.0 oder, wie manche sagen, die vierte industrielle Revolution bringt disruptive, ja revolutionäre Veränderungen mit sich. Verantwortlich für diese neuen Chancen und Herausforderungen ist mit Sicherheit auch das Internet der Dinge, das im Produktionsbereich heutzutage schon nicht mehr wegzudenken ist. Ob es nun um die Produktion selbst
Editor's Note: SAS' Evan Mann contributed to this post. First came SAS' reputation as a great place to work. Next came a storytellers article series offering a glimpse of the people behind the brand. Now there's the SAS Users YouTube Channel, where tutorial videos provide a window into some of
Editor’s note: This article is a continuation of the series by Conor Hogan, a Solutions Architect at SAS, on SAS and database and storage options on cloud technologies. Access all the articles in the series here. In a previous article in this series, Accessing Databases in the Cloud – SAS
Digital transformation and analytics/AI are at the top of the agenda. But wait – is there anything new about it? Innovation? No. Transformation? No. Value-driven approaches? No. Is it even worth talking about AI? YES, it is! The competitive landscape and the speed of inventing new products, services and new
現在、世界規模の大きな問題が多く存在しています。その問題は、飢餓、貧困、差別、異常気象など、どれも解決が困難なものばかりだと思われます。SASでは、これらの問題の解決に向けて多くの人の助けを借りるための手段の一つとして、GatherIQというアプリの提供を行っています。今回はこのGatherIQについて、その内容に触れつつご紹介します。 GatherIQとは何か? GatherIQはData for Goodの一環で作製されたアプリです。まず、Data for Goodとは、世界的に解決の困難な問題を取り扱うNPO団体などを通じて得られたデータを分析し、世界の課題を解決してより人々を幸せにする取り組みのことです。GatherIQの最大の特徴は一般人参加型のアプリケーションとなっているという点であり、これによりPCからの利用のみならず、アプリのダウンロードによりスマートフォンからの利用も可能となっています。また、NPO団体等から得たデータを分析したものを自由に取得できるため、研究の題材としたり、自身の学習に使用したりすることができるようになっています。 その内容は具体的にどのようなものなのか? GatherIQでは「貧困の根絶」や「男女平等」、「健康」などの多岐にわたった17のテーマを扱って世界の課題を解決する糸口の提供を行っています。GatherIQのデータは、様々な形式で提供されています。 テーマごとにデータが分けられており、その形式も様々である。 これらの形式はその使用場面に応じて特化しています。つまり、テーマの概要を知りたい時にはOverview、気軽に見たい時は動画やクイズ、データをより多く知りたい時にはデータストーリーの閲覧を、というように多様な用途での使用が可能となっています。 さて、今回はGatherIQの提供しているデータの中から、「教育品質」のテーマについて取り上げてみたいと思います。 教育はなぜ大事なのか? 社会を繁栄させるには、働き手の潜在的な知識レベルが高いことが必要不可欠であるといわれています。多くの専門家は、教育が発展的な進化を遂げているとき国は繁栄すると発言しており、経済の安定性と成長率が教育と直接的に結びついているとも発言しています。特に、初等教育である計算力や識字力は将来経済成長の際に必要とされる技術を見通す力を得るために必要不可欠であるとされています。教育の水準の上昇により、個々人の知識のレベルが上がるため、雇用率が上昇します。そのため、結果的に経済及び、国全体が発展します。 "Inclusive Education - Education Equity Now" UNICEF Europe & Central Asia 何が課題なのか? 未だ尚、学校に行くことのできない子供や、教育を受けることのできない子供は一定数存在します。世界規模で見て、小学校に行くことのできない子供は2015年の時点で6,300,000人存在し、これは1975年と比べると半分にまで減少しましたが、それでもまだたくさんの子供が必要最低限の教育すら受けられていないことがわかります。全ての子供が必要最低限の教育を平等に受けられるようになるには、まだまだ及んでいないということがこのデータからわかります。 変化しつつある各国の意識 しかし、グローバルな視点から見ると、世界的には教育を推進する傾向にあると考えられます。世界的な識字率は過去30年の内に劇的に上昇していることが判明していますが、この背景には多くの国がinclusive education(全ての子供が平等に教育を受けられ、個性を尊重して学ぶ教育方法)を取り入れているからであると言われています。 特に、北アフリカや中東では一世代の違いだけで識字率の上昇が著しくなっています。一方で、世界的に見た教育レベルとしては、一部の先進国は低迷状態にあるようにも感じられます。USAは教養のある国としては、世界6位に位置していますが、計算力と識字力のテストスコアランキングでは世界31位となっています。 教養のある国ランキング(上図)ではUSAは6位だが、計算力と識字力のスコアランキング(下図)ではUSAは31位である。 ここから、USAは他の国に比べて計算及び識字の習熟度において遅れを取っていることが示唆されています。GatherIQの記事では、教育を推進するためには、教育者や生徒を確実に支援するための政策を制定することが第一であると述べられています。生産の効率化や経済成長を促すためには、各国がより真摯に、子供たちに教育を享受させる取り組みについて熟慮することが必要不可欠でしょう。 このように、GatherIQを用いて一般の人でもデータを用いて考察や現状認知を行うことが可能です。他にも、教育のテーマに対して、これから子育てを行う主婦の方や教育関係者の方にとっては、GatherIQのデータから初等教育が国にとっても当人にとっても非常に重要であることが読み取ることができるかも知れません。そこから、初等教育を受ける子供たちに念入りに教育を促す動きが生まれる可能性は容易に予測できると思います。 以上がGatherIQの御紹介でした。GatherIQについて更に知りたいという方はこちらからアクセスください。また、SASのWebページやブログではData for Goodに関する考察や情報も公開していますので、併せて御覧ください。 SAS JapanではStudent Data for Good communityを開催し、Data for Goodの達成を目指す学生の参加を募集しています。 興味をお持ちでしたらJPNStudentD4G@sas.comまでご連絡ください。