The DO Loop
Statistical programming in SAS with an emphasis on SAS/IML programs
You've probably heard about the "80-20 Rule," which describes many natural and manmade phenomena. This rule is sometimes called the "Pareto Principle" because it was discovered by Vilfredo Pareto (1848–1923) who used it to describe the unequal distribution of wealth. Specifically, in his study, 80% of the wealth was held

The sweep operator performs elementary row operations on a system of linear equations. The sweep operator enables you to build regression models by "sweeping in" or "sweeping out" particular rows of the X`X matrix. As you do so, the estimates for the regression coefficients, the error sum of squares, and

A colleague and I recently discussed how to generate random permutations without encountering duplicates. Given a set of n items, there are n! permutations My colleague wants to generate k unique permutations at random from among the total of n!. Said differently, he wants to sample without replacement from the

Sometimes it is important to ensure that a matrix has unique rows. When the data are all numeric, there is an easy way to detect (and delete!) duplicate rows in a matrix. The main idea is to subtract one row from another. Start with the first row and subtract it

When we breathe, we breathe in and breathe out. If we choose only one or the other, the results are disastrous. The same principle applies to professional growth and development. Whether we are programmers, statisticians, teachers, students, or writers, we benefit from taking in and giving back. We "take in"

Correlation is a statistic that measures how closely two variables are related to each other. The most popular definition of correlation is the Pearson product-moment correlation, which is a measurement of the linear relationship between two variables. Many textbooks stress the linear nature of the Pearson correlation and emphasize that