En la actualidad, los modelos analíticos son herramientas esenciales para tomar decisiones basadas en datos. Desde prever tendencias hasta optimizar operaciones, los modelos analíticos dependen en gran medida de la calidad de los datos de entrada. La precisión, integridad y relevancia de estos datos son cruciales para obtener resultados confiables
Insurance
Insurers are racing to adopt GenAI, despite concerns. See where the industry is headed.
La Inteligencia Artificial Generativa y la Inteligencia Artificial Predictiva son cada vez más utilizadas en el sector asegurador para predecir tendencias, demandas y optimizar operaciones. Sin embargo, de acuerdo con un estudio elaborado por Ernest and Young, el 50 % de los ejecutivos y responsables de áreas de tecnología no
Investment in AI is an obvious target for the insurance sector. Insurers have always been interested in technology that helps detect and prevent fraud and improve underwriting efficiency while speeding processes and reducing – or at least not increasing – costs. But what is the reality in this highly regulated
Five years ago, there was no conflict in Ukraine. People went into offices for work. No one was fighting over toilet paper. Everyone’s concept of AI was loosely anchored by Hollywood films like Terminator or War Games. And, insurers enjoyed relatively stable profits, consistent inflation/interest rates, and manageable change volume.
The commercial real estate crisis is looming for insurers and banks. Learn how AI decisioning can help.
Learn how SAS and cloud computing can help insurers realize operational and business benefits.
As part of this year's IEEE Visual Analytics Science and Technology (VAST) Challenge, a group of SAS data scientists puit SAS Viya and related machine learning tools to the ultimate test - to identify individuals in a complex fishing network. Excitedly, the team received the Honorable Mention Award for Breadth of Investigation!
Going forward, insurance will be based on data and AI – with a predict-and-prevent approach.
Os eventos climáticos extremos, como furacões, inundações e incêndios florestais, têm se tornado mais frequentes e intensos ao redor do mundo, colocando um holofote em diversos setores da economia, tanto na esfera pública quanto nas empresas. No âmbito privado, o mercado de seguros é um exemplo de como está sendo
Menos de la mitad de las aseguradoras en MX y LATAM han implementado IA 47% de las aseguradoras no han podido integrarse a la IA debido a la calidad de los datos que recaban En México y LATAM el 40% de las aseguradoras han iniciado la integración de herramientas
2024年5月31日(金)、SAS Institute Japanは、「保険業界向けインタラクティブセッション 新しい保険ビジネス創造に向けた事例と成功要因」 を六本木ヒルズ森タワー11階のSAS Institute Japan本社で開催した。 開会挨拶 保険業界においても顧客ニーズは多様化、高度化している。たとえば、生保ではウェルビーイングのような包括的な顧客ニーズを充足することが求められている。そして、顧客ニーズを充足するためのエコシステムが台頭し、保険商品がエコシステムに組み込まれ、顧客の生活の中でフリクションレスに保険や関連サービスが提供されるようになっている。今、保険会社はどのように新しい商品・サービスを開発し、マーケティングを実行すべきなのか。本イベントでは、保険業界で実際に多数のイノベーションやCX変革に関わっている有識者をゲストに迎え、今取り組むべき課題やその実際を議論していく(SAS Institute Japan カスタマアドバイザリ事業本部 原島 淳氏)。 セッション1:保険業界におけるビジネスアーキテクチャの転換 まず、福島 渉氏(デロイトトーマツコンサルティング 執行役員 保険インダストリリーダー)が「保険業界におけるビジネスアーキテクチャの転換」について話した。 「これまで世界の保険業界において、ランキング上位企業の顔触れは大きく変わってこなかった。100年以上の歴史を持つ保険会社がランキング上位を占めている。それは従来の保険会社はバリューチェーンの各機能を内製化しており、それぞれの知見や能力が競争優位性の源泉であり、また参入障壁になっていたからだ。大手企業は、潤沢な資本を背景とした価格形成力を持ち、販売網を張り巡らせ、そして高い引受・査定能力により収益を維持してきた。 しかし、今日ではバリューチェーン各機能の分立と共有化が進んだことで、この構造が崩れ始めている。保険会社のビジネスモデルは多様化しており、また水平横断的機能提供を狙うプラットフォーマーが出現している。各保険会社は自らの強みを活かしながら、フィナンシャル&ヘルスマネジメント型、経済活動のあらゆるリスクをカバーするフルスペック型、ドメインフォーカス型、もしくはプダクトファクトリー型といったビジネスモデルを選択していくことになると予測する。また、機能特化/集約型プラットフォーマーとして、データアナリティクス、カスタマーエンゲージメント、キャピタル&インベストマネジメント、ITテクノロジーのプラットフォーマーが出現してくるだろう。たとえば、資産運用プラットフォームBlackRock、”Technology as a Service”のOneConnectといった企業はそれに当たる。保険会社はこういったプラットフォーマーを活用することも重要だ。 このような潮流を受けて、保険業界のビジネスアーキテクチャは変化している。これまでは、単一の商品を効率的に販売する”代理店モデル”が主流だった。しかし、これからは商品・サービスとチャネルをターゲット顧客に応じて最適な形で組み立てていくことが重要だろう。前述のような機能プラットフォーマーが提供する”モジュール化”された機能を自社の商品・サービスやチャネルと組み合わせることで新しいビジネスモデルを定義し、多数の顧客セグメントに効率よく価値提供することも可能だ。たとえば、よく知られるエンビデッド保険や、シンガポールIncomeのSNACKの革新的なサービスもその一例だ。 今日の保険業界ではスピーディーなイノベーションが強く求められている。イノベーションを加速させるには、モジュール化された機能を組み合わせることで、商品・サービスをスピーディーにプロデュースする能力が重要と言える。これからの保険会社に求められるのは、ブランド価値とビジネスケースの仮説構築力と、それをもとに商品・サービスをアジャイルで構築できる新しいテクノロジー基盤、そこで仮説検証を高速で廻せる業務プロセスである。今日の保険会社には、商品・サービス開発、マーケティング、テクノロジー、そして全体のガバナンスの各領域で、”モジュール”を活用したスピーディーな競争優位性の創造が求められている。」 セッション2:三井住友海上におけるCXマーケティングとデータ活用の取り組みについて では、保険会社では実際にどのように商品・サービスを開発し、マーケティングを行っているのだろうか。続いて、佐藤 祐規氏(三井住友海上 CXマーケティング戦略部 データマーケティングチーム長)が「三井住友海上におけるCXマーケティングとデータ活用の取り組みについて」と題して、実際の取組みを紹介した。 「言うまでも無く、保険業界を取り巻く環境は大きく変化した。お客さまが自ら必要な情報を選択する時代では、事故補償時だけの関係性から脱却しなければならない。CXマーケティング戦略部では、お客様ロイヤルティ大手損保No.1を目指している。このためには、顧客接点を増強すること、そして、データ分析やリサーチを通してお客様の解像度を高め、お客さまごとのコミュニケーションを実施することで、新規獲得手法を高度化し、またお客さまの期待を超える体験価値を提供することが重要だ。そして、そのためにはデータ分析やデータ活用が欠かせない。 当社ではマーケティング領域のデータ活用を強化しているが、いくつかの取組事例を紹介する。まず、ドラレコ付き自動車保険のクリエイティブ開発の事例だ。従来、クリエイティブ開発は商品所管部門が担当しており、モノの視点(機能的価値)からの価値訴求が多かった。しかし、実際にお客さまへの訴求を行っている代理店への調査を行ってみると、お客さまは加入後の体験とそれによる安心に価値を感じていることがわかった。そういった体験価値の視点からプロトタイプを作成し、ターゲット層にアンケート調査を行うことでブラッシュアップを行い、より評価の高いクリエイティブを作成することができた。 この事例のように、消費者調査を行なうことで顧客のニーズや求められる価値を理解した上で、商品・サービス開発を進めている。お客さまに選んでいただくためには、良い商品を開発するだけでなく、当社の認知度や好感度、さらに契約体験や事故体験も重要な要因となる。それぞれの体験や認知が契約にどの程度寄与するのかも分析を行っている。 こういった分析を通してマーケティングミックスを最適化するために、弊社ではCDP(Customer Data Platform)を構築し、お客様起点で属性、契約、行動、調査、事故の情報を統合、活用している。この情報は代理店にも還元していて、代理店向け営業支援システムにNBA(Next Best Action)情報を配信している。 今後の方向性として、保険会社はプロダクト中心の発想から抜け出し、カスタマージャーニーにおける価値を中心に考える必要がある。顧客との接触頻度を拡大すべきだが、無意味な拡大は逆効果で、適度な距離感を持って、有用なコミュニケーションを行っていくことが重要だ。そのためにはお客さまの文脈を押さえた(”ジョブ理論”にもとづく)コミュニケーションが欠かせない。現在、ChatGPTを活用しながら、ジョブ理論にもとづくクリエイティブ開発を進めているが、こういった施策を通してCX向上を目指したい。保険会社の商品・サービスは今後拡大していくだろうが、差別化の最大のポイントはCXだと考えている。」 セッション3:保険イノベーションをサポートする新しいSASテクノロジと事例 こういった保険業界のイノベーションやCX高度化に求められるテクノロジーとは何か。原島 淳氏(SAS Institute Japan カスタマアドバイザリ事業本部)が「保険イノベーションをサポートする新しいSAS」と題して、SASが提供するテクノロジーと海外でのその活用事例を話した。 「保険会社は今、新しい商品・サービスとそのマーケティングモデルをスピーディーに創造していくことが求められている。競争力の源泉としてデータとAIを活用し、また新しいマーケットプレイスやテクノロジー企業が提供する”モジュール”との連携も重要だ。 SASはデータから価値実現のプロセスをEnd-to-Endでサポートし、アジャイルにも対応している。また、あらゆるシステム/モジュールとリアルタイムで統合可能なオープン性を持つ。SASを活用することで、データ・AIを活用した判断をカスタマージャーニーに組み込み、顧客体験を最適化できる。たとえば、外部ウェブサイトの顧客行動をリアルタイムで捕捉・分析し、最適な保険・サービスを最適な保険料で提案。申込があれば本人確認を行い、自動引受査定を行い、スピーディーに契約のご案内を行う、といった形で、業務横断のデータ・AI活用が可能だ 保険業界においてもSASを活用した事例は拡大している。その中から、(1)新しい商品・サービスをスピーディーに創造している事例、(2)優れたCXを提供する顧客接点を構築している事例、(3)業務横断の高度なデータ・AI活用を実施している事例を紹介したい。 まず、(1)海外ダイレクト保険プラットフォーマーでは、多数の外部パートナーに対し、APIを通して豊富な商品とSASで開発されたカスタマーエンゲージメントプラットフォームを”モジュール”として提供する。このプラットフォームはスケーラブルで、かつスピーディーに拡張できる点が特徴であり、多数の外部パートナー向けのエンベデッドの保険の提供や、金融・小売といった多数の販売パートナーとの提携によるマーケティングモデルの展開をサポートしている。次に、(2)カナダSun Lifeでは、デジタルアドバイザ”Ella”がアマゾンエコーなどのインターフェースを通して顧客のライフスタイルをサポートしながら、各種データにもとづいて健康や資産運用のための様々なナッジを提供している。(3)海外保険会社の中小企業向け保険のアンダーライティングでは、引受リスクだけでなく、保険+予防予後サービスを含むトータルの顧客LTVを加味して最適な提案(NBO=Next
Stop bias in its tracks – learn about the value of synthetic data for insurance.
Neste ano, mais uma vez o SAS participará do evento FEBRABAN TECH, que acontece de 25 a 27 de junho, em São Paulo, no Transamérica Expo Center. Levaremos ao evento as últimas novidades de dados e IA para o setor financeiro, com uma novidade: dez palestras no estande sobre os
Una encuesta mundial de profesionales antifraude realizada por la ACFE y SAS revela un increíble entusiasmo por la IA generativa, pero estudios de referencia anteriores sugieren una realidad más difícil. La IA generativa ha cautivado la imaginación del público, y su poder y promesa parecen estar a punto de afectar
En los últimos años, la ciencia de datos ha experimentado un crecimiento exponencial y se ha convertido en un pilar fundamental para las estrategias de las organizaciones en todas las industrias. Sin embargo, para los data scientist experimentados, el panorama del dato se encuentra en un proceso de cambio constante.
A relação entre a prevenção de fraudes e a experiência do cliente é indiscutivelmente estreita no mundo financeiro moderno. A análise de tendências atuais revela a importância da preservação dos dados como um fator crucial para organizações, impactando a confiança que clientes tem em empresas, a retenção deles - e,
There's a lot to gain for insurers that move fast enough to adopt promising applications of trustworthy AI.
Careers in risk management can be rewarding. The disciplines are key to a broad range of industries. Risk management teases the analytical side of the brain and there is a clear line of contribution between the work and the organization's performance. Careers in risk management are also shrouded in mystery
À medida em que as organizações avançam suas estratégias digitais, a necessidade de entender profundamente os seus clientes se torna cada vez mais evidente. E é aqui que a plataforma de dados do cliente, também conhecida como Customer Data Platform (CDP), desempenha um papel fundamental. Neste artigo, detalho o conceito
International Women’s Day is an opportune moment to celebrate the achievements of women, specifically those combating climate change with technology. Among the inspiring stories is the women-led team of data scientists known as the StaSASticians, winners of the insurance track of the 2023 SAS Hackathon. No beginner’s luck, just accessible
No ano passado, assistimos a uma revolução notável no desenvolvimento de modelos generativos de IA e na sua adoção generalizada por indivíduos e empresas. Dois exemplos claros foram o ChatGPT e o DALL-E da OpenAI que, em apenas alguns meses, conseguiram conquistar milhões de utilizadores em todo o mundo, garantindo
Crimes financeiros como fraudes estão aumentando, sobretudo após a digitalização intensificada trazida pela pandemia. Neste cenário, o método mais popular entre os fraudadores é a engenharia social. Esta técnica consiste em criminosos convencerem pessoas a fornecer informações confidenciais, geralmente se passando por alguém ou algo em que a vítima confia.
Tem alguma noção de onde estão os seus dados? Provavelmente não, mas os fraudadores certamente que sim! A fraude pode não ser algo que pensemos todos os dias, mas a verdade é que pode afetar todas as áreas da nossa vida, daí a sua relevância. Anualmente, durante a Semana Internacional de
급변하는 대외 환경 변화와 지속 가능한 성장을 위한 금융기관 조기경보시스템의 조건 최근 국내 대외 환경은 경기변동성 증가와 저성장 국면 진입의 가속화로 요약할 수 있습니다. 또한, 최근 30년을 돌아보면 ‘97년 외환 위기, ‘08년 글로벌 금융 위기와 ‘20년 COVID19 팬데믹 등 주기적인 경제위기 발생과 더불어 글로벌 경기 민감도 역시 증가한 상황입니다.
Maturidade de cada setor é diferente, e usar dados de todos os canais, de forma conjunta, ainda desafia gestores As abordagens de uso da tecnologia para relacionamento com o consumidor já são bem conhecidas por organizações que buscam estabelecer uma melhor experiência do cliente e mais eficiência operacional. Este conjunto
SAS Enterprise Guide(이하 SAS EG)의 최근 버전에서는 기존의 폴더를 통한 접근뿐만 아니라 GitHub 레파지토리를 등록하여 프로그램을 실행, 수정, 관리할 수 있습니다. 회사나 개인 용도로 GitHub을 사용하고 있을 경우, SAS EG에 레파지토리를 등록하여 사용이 가능합니다. 기존에 SAS EG와 GitHub을 사용하는 분이라면 EG를 통해서 좀 더 효율적이고 편리하게 작업을 하실 수 있습니다.
Na przestrzeni lat krajobraz oszustw przeszedł wiele transformacji, a techniki stosowane przez oszustów ewoluowały. Niektóre z trendów wykorzystywanych przez oszustów obejmują podszywanie się między innymi pod kurierów, banki, firmy energetyczne, a nawet firmy loteryjne. Okazja czyni złodzieja W czasie pandemii dużą popularność zyskał pet scam, czyli schemat opierający się na
1.背景 データ管理と分析の世界では、効率的かつ迅速なデータの転送と書き込みは極めて重要です。特に大規模なデータウェアハウスサービスを利用する際には、このプロセスの最適化が不可欠です。Azure Synapse Analyticsは、そのようなサービスの一つとして注目を集めており、SAS Viyaを使用する多くの企業やデータアナリストも、より効率的なデータハンドリングを追求しています。 SAS ViyaのユーザーはSAS/ACCESS to Microsoft SQL Serverを使用してAzure Synapseにデータを転送および書き込む際に、より高いデータ書き込み効率と転送速度を求めるのは当然です。データ処理能力をさらに強化し、書き込み効率を高めるために、SAS Access to SynapseのBulkLoad機能は非常に優れた選択肢です。BulkLoad機能はデータの書き込み速度を大幅に向上させるだけでなく、Azure Data Lake Storage Gen 2(以下、ADLS2と称する)を利用して、安定かつ安全なデータストレージおよび転送環境を提供します。 ただし、BulkLoad機能を使用する際にはADLS2の設定と構成が関わってくるため、構成および使用のプロセスが複雑に感じられたり、疑問が生じたりすることがあります。このブログの目的は、管理者およびユーザーに対して、明確なステップバイステップの設定プロセスを提供し、構成の過程で見落とされがちなキーポイントを強調することで、設定時の参考になるようにすることです。 以下は本記事内容の一覧です。読者は以下のリンクをで興味のあるセクションに直接ジャンプすることができます。 2.Bulkload機能について 3.BULKLOAD機能を利用するためのAzure側で必要なサービスの作成 3-1.Azure Data Lake Storage (ADLS) Gen2のストレージアカウントの作成 3-2.ストレージアカウントのデータストレージコンテナの作成 3-3.ストレージアカウントの利用ユーザー権限の設定 3-4.データ書き込み用のSASコードの実行 3-5.Azureアプリの設定 4.SAS Viya側の設定とAzure Synapseへの接続 4-1.SAS Studioでの設定 4-2.Azure SynapseのSQLデータベースをSASライブラリとして定義 4-3.Azure Synapseへデータの書き込み 2.Bulkload機能について なぜSAS ViyaがBulkload機能を使用してAzure Synapseに効率的にデータを書き込む際にADLS2サービスが必要なのか、そしてそのプロセスがどのように行われるのかを説明します。 Azure Synapse Analyticsは、柔軟性が高く、高いスループットのデータ転送を可能にするために、COPY
The world’s a hot mess – literally. We're facing unprecedented weather patterns fueled by climate change, uncertainty stemming from financial volatility and worsening business results. All while carriers struggle to determine which AI solutions (among thousands) to choose. It’s enough to make you want to shut the doors and windows