Artificial Intelligence

Discover how AI is used today and how it will augment human experience in the future

Analytics | Artificial Intelligence | Customer Intelligence
SAS Korea 0
인공지능(AI) 챗봇은 고객 서비스를 어떻게 변화시킬까요?

고객 인텔리전스(CI)를 위한 챗봇 이미 많은 기업들이 인공지능(AI)으로 비즈니스를 자동화하고, 더 나은 고객 경험을 제공하며, 매출을 높이고 있습니다. 이미 수년 전부터 은행은 인공지능을 활용해 잠재적인 금융 사기를 탐지하고, 통신사는 고객 이탈을 예측해왔는데요. 챗봇은 한 단계 더 나아가 인공지능을 일상 가까이로 가져왔습니다. 챗봇은 머신러닝, 딥러닝, 음성 인식(voice-to-text), 자연어처리(NLP), 추천 엔진 등 여러

Analytics | Artificial Intelligence | Students & Educators
Andreas Becks 0
KI und die Angst um meinen Job: Wie eine emotionale Debatte zu einer sachlichen und konstruktiven Auseinandersetzung werden kann

Wird KI die Spaltung unserer Gesellschaft in die „Elite“ und den „besorgten, abgehängten Rest“ dramatisch beschleunigen? Zum Beispiel durch hocheffektive personalisierte Medizin, die sich nur wenige leisten können? Oder den Wegfall von automatisierbaren Jobs im Mittelstand, während die hochqualifizierte Elite ihre Machtpositionen beibehält oder gar ausbaut? Oder bietet sich nicht

Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
인공지능(AI)이 선택한 지구상 최고의 파라다이스는 어디일까요?

나만의 파라다이스를 찾아라! 여름 휴가 계획 모두 세우셨나요? 어디로 갈지 아직 고민 중이시라면! 클릭 몇 번만으로 전 세계에서 나와 가장 잘 맞는 도시를 알려주는 ‘SAS 파라다이스 파운드(SAS Paradise Found)’ 프로젝트를 소개합니다. 사람마다 매력적인 여행지와 거주지를 선택하는 기준은 다르기 마련인데요. SAS 파라다이스 컨피규레이터(Paradise Configurator)는 가족, 문화, 자연, 안전 및 인프라, 생활비, 레스토랑

Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
이모티콘, 감성 분석의 핵심 요소로 떠오르다

지난 7월 17일, 세계 이모티콘의 날을 맞아 애플, 유튜브, 페이스북 등 글로벌 기업들은 새로운 이모티콘을 공개하고 관련 설문조사 결과를 발표하는 등 다양한 이벤트를 진행했는데요. 많은 사람들이 습관처럼 사용하는 이모티콘은 온라인 비주얼 커뮤니케이션이라는 새로운 트렌드의 핵심 요소로 자리잡았습니다. 온라인, 특히 모바일에서 빠르고 명확하게 표현을 전달해야 할 때 이모티콘은 전 세계 누구와도

Advanced Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
머신러닝 해석력 시리즈 3탄: 부분의존성(PD) & 개별조건부기대치(ICE) 플롯 정복하기!

머신러닝 모델 해석력 시리즈 3탄! 오늘은 머신러닝 모델의 작동 원리에 대한 인사이트를 도출할 수 있는 변수를 표시하는 두 가지 방법에 대해 자세히 살펴보고자 합니다. 머신러닝 모델 해석력 시리즈 1탄과 2탄을 놓치셨다면, 클릭해주세요! 1탄: 인공지능(AI)과 머신러닝을 신뢰하기 위한 필수 조건, 해석력! 2탄: 머신러닝 해석력 시리즈 2탄: 데이터 세트를 이해하고 해석하는 방법 데이터 과학자가 모델이

Artificial Intelligence
SAS Viya: DLPyを用いたディープラーニングの判断根拠情報出力

ディープラーニング&画像処理用Python API向けパッケージ:DLPyでは、DLPyの基本的な機能を紹介しました。その中で、ディープラーニングの判断根拠となり得る情報、つまり入力画像のどこに着目しているのかをカラフルなヒートマップとして出力することができるheat_map_analysis()メソッドに触れました。 今回は、heat_map_analysis()メソッドを使用して、ヒートマップを出力する際に指定可能な有効なオプションに関していくつか紹介します。 GPU活用 ヒートマップ解析時の判別(予測)処理再実行回避 ヒートマップ出力対象画像タイプ(正・誤判別)指定 ヒートマップ出力対象画像指定 1.GPU活用 SAS Viyaのディープラーニングでは、ネットワークの層ごとにGPUを使用するかどうかの指定が可能ですが、ヒートマップを出力する際にも、指定したテストデータをモデルに当てはめての予測処理は実行されることになるので、同様にGPUを使用することが可能です。 GPUを使用することで、ヒートマップ出力の時間を短縮することができます。 2.ヒートマップ解析時の判別(予測)処理再実行回避 最初にheat_map_analysis()メソッドを実行する際には、モデルにテストデータを当てはめて判別(予測)処理が行われますが、以降、heat_map_analysis()メソッドを使用して、必要な判断根拠情報を再出力する際には、最初の実行時に計算された値を再利用するので、都度再計算(判別・予測処理)は行わず、より効率的、迅速に、ヒートマップを出力することができます。 「1.GPU活用」でのheat_map_analysis()メソッドではパラメータとして「data=te_img」が指定され、モデルにテストデータを当てはめていましたが、下記の再実行の例では、このパラメータは指定されず、結果のメッセージにも「Using results from model.predict()」と、実行済みの計算結果が使用されている旨が表示されています。 3.ヒートマップ出力対象画像タイプ(正・誤判別)指定 ディープラーニングのモデルにテストデータを当てはめて判別(予測)した結果として、正しく判定された画像と間違った判定が下された画像があります。 heat_map_analysis()メソッドの「img_type」パラメータを使用し、正:”C”(Correct Classification), 誤:“M”(Miss Classified), すべて:“A”(All)、を指定して該当画像の判断根拠情報を出力することが可能です。 以下は、誤判別された画像(img_type=‘M’)の判断根拠情報出力例です。 画像のどの部分に着目して、間違った判断に至ったのかを確認することができるので、モデル精度を改善するためには、学習用にどのような画像が必要なのかといった、示唆も与えてくれます。 4.ヒートマップ出力対象画像指定 heat_map_analysis()メソッドの「filename / image_id」パラメータを使用し、特定の画像を指定して、出力することも可能です。 以下は、画像ファイルリストの上位2つの画像のヒートマップをファイル名指定で出力している例です。 以下は、画像ファイルリストの先頭の画像のヒートマップをID指定で出力している例です。 上記例の詳細に関しては、こちらのGitfubサイトをご覧ください。  DLPyの詳細に関しては、こちらのGithubサイトをご覧ください。  

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
「Pipefitter」の応用 ~CNN(特徴抽出器)+機械学習(分類器)でCNNの欠点を補完

前回は、SASの「Pipefitter」の基本的な使用方法を紹介しました。続く今回は、基本内容を踏まえ、ひとつの応用例を紹介します。 SAS Viyaのディープラーニング手法の一つであるCNNを「特徴抽出器」として、決定木、勾配ブースティングなどを「分類器」として使用することで、データ数が多くないと精度が出ないCNNの欠点を、データ数が少なくても精度が出る「従来の機械学習手法」で補強するという方法が、画像解析の分野でも応用されています。 以下は、SAS Viyaに搭載のディープラーニング(CNN)で、ImageNetのデータを学習させ、そのモデルに以下の複数のイルカとキリンの画像をテストデータとして当てはめたモデルのpooling層で出力した特徴空間に決定木をかけている例です。 In [17]: te_img.show(8,4) 以下はCNNの構造の定義です。 Build a simple CNN model   In [18]: from dlpy import Model, Sequential from dlpy.layers import * from dlpy.applications import *   In [19]: model1 = Sequential(sess, model_table='Simple_CNN')   Input Layer   In [20]: model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means))   NOTE: Input

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
機械学習のパイプラインを簡素化するPython向けパッケージ「Pipefitter」

SASでは、Python向けパッケージ/ライブラリとして、機械学習のパイプラインの実装を簡素化する「Pipefitter」を提供しています。 SASの「Pipefitter」パッケージは、SAS Viyaまたは、SAS v9の反復可能なワークフローの一つの段階として、データ変換とモデルフィッティング向けパイプラインを開発するためのPython APIを提供します。 このパッケージを使用すると、SASでデータを操作して、次のような処理を実装できます: ・欠損値補完 ・デシジョンツリー、ニューラルネットワーク、およびその他の機械学習テクニックを使用したパラメータ推定値の適合 ・ハイパーパラメータチューニングを使用したモデル選択の高速化 ・スコアリングとモデル評価 「Pipefitter」のもう一つの重要な特徴は、SASが提供する他の2つのPythonパッケージの能力に基づいていることです。 SWAT: SAS Viyaプラットフォームのインメモリー分析エンジンであるSAS Cloud Analytic Services(CAS)を活用し様々なデータ操作や分析を可能にするPython向けパッケージ SASPy: SAS9.4の機能を活用し、分析、データ操作、および視覚化を行うためのPython向けパッケージ ロジスティック回帰でのパラメータ推定などのパイプライン処理は、SASPyを介してSAS 9で、SWATを介してCASで同じように実行されるように設計されています。 以下は、タイタニック号の乗船者データに基づくパイプラインの例です。 まず、KaggleのサイトからPandas DataFrameにデータをダウンロードします。 In [1]: import pandas as pd In [2]: train = pd.read_csv('http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv')   In [3]: train.head() Out[3]: PassengerId Survived Pclass 0 1 0 3 1 2 1

Analytics | Artificial Intelligence
Mauricio González 0
Para ser inteligente, su empresa debe aprender primero

Para desarrollar nuestra inteligencia, los seres humanos tenemos que aprender. Comenzamos por percibir el entorno, perfeccionar nuestras capacidades de comunicación (hablar, leer, transmitir pensamientos abstractos) y absorber una gran cantidad de conocimientos a medida que crecemos. La máquinas y computadoras siguen un camino parecido. Para que Siri o Alexa, por

Advanced Analytics | Artificial Intelligence | Customer Intelligence
SAS Korea 0
스포츠 클럽, 분석으로 선수와 경기에 대한 완전한 그림을 그리다

스포츠 클럽은 다양한 소스로부터 수많은 데이터를 수집합니다. 선수들의 건강 상태에 대한 물리적 데이터, 의료 정보, 득점이나 경기 시간 등의 성과 데이터가 대표적인데요. 이외에도 티켓 가격, 판매, 시즌권 패턴 등 팀 운영 측면에서 다양한 데이터가 모입니다. 스포츠 클럽은 이전에도 데이터를 활용해왔습니다. 경기 장면을 촬영하고 실시간으로 또는 경기가 끝난 후 주요 영상(footage)을

Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Will artificial intelligence replace humans?

We have entered the “second machine age.” The first machine age began with the industrial revolution, which was driven primarily by technology innovation. The ability to generate massive amounts of mechanical power made humans more productive. Where the steam engine started the industrial revolution, the second machine age has taken

Advanced Analytics | Artificial Intelligence | Machine Learning
Ilknur Kaynar Kabul 0
Interpret model predictions with partial dependence and individual conditional expectation plots

We have updated our software for improved interpretability since this post was written. For the latest on this topic, read our new series on model-agnostic interpretability.  Assessing a model`s accuracy usually is not enough for a data scientist who wants to know more about how a model is working. Often

Analytics | Artificial Intelligence
SAS Korea 0
인공지능(AI)과 미래 일자리에 대한 낙관

미래에 대한 좋은 소식이 있습니다. 어디선가 들어봤을지도 모르지만 인공지능(AI)과 함께하는 미래 일자리가 모두 절망적이고 암울한 것만은 아닙니다. 말콤 프랭크(Malcolm Frank)의 연구 기반 저서 ‘기계가 모든 것을 할 때 무엇을 해야 하는가(What to Do When Machines Do Everything’는 데이터를 통해 이를 증명합니다. 또 학생과 근로자는 새로운 교육 접근법을 통해 인공지능과 함께하는 미래에 더욱

Advanced Analytics | Artificial Intelligence | Machine Learning
Yue Qi 0
Recurrent neural networks: An essential tool for machine learning

Sequence models, especially recurrent neural network (RNN) and similar variants, have gained tremendous popularity over the last few years because of their unparalleled ability to handle unstructured sequential data. The reason these models are called “recurrent” is that they work with data that occurs in a sequence, such as text

Artificial Intelligence
Leo Sadovy 0
AI and trust

Andy Dufresne, the wrongly convicted character in The Shawshank Redemption, provocatively asks the prison guard early in the film: “Do you trust your wife?” It’s a dead serious question regarding avoiding taxes on a recent financial windfall that had come the guard's way, and leads to events that eventually win

Analytics | Artificial Intelligence
SAS Korea 0
인공지능(AI)으로 의료 산업을 혁신할 수 있을까요?

소비자들은 다양한 산업에 빠르게 도입되고 있는 인공지능(AI)을 어떻게 받아들이고 있을까요? SAS가 최근 미국인 500명을 대상으로 조사한 결과, 소비자들은 금융이나 소매 분야보다 의료 산업의 인공지능 기술을 더욱 편안하게 여기는 것으로 나타났습니다. 특히 응답자의 47%는 수술 중에도 기꺼이 인공지능 기술의 도움을 받겠다고 답했는데요. 또 10명 중 6명(60%)은 의사가 애플워치나 핏비트와 같은 웨어러블 기기의 데이터를

Analytics | Artificial Intelligence
Inteligencia artificial, ¿qué quiere que haga por su empresa?

La medida en que las organizaciones se beneficien de la Inteligencia Artificial, machine learning y la analítica dependerá de sus necesidades y la aplicación que puedan tener para hacerlas más rentables, ágiles y competitivas. La inteligencia artificial (IA) ha estado presente en nuestras vidas más tiempo del que creemos. Está

1 29 30 31 32 33 34

Back to Top