Machine Learning

Get the latest machine learning algorithms and techniques

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Management | Machine Learning | SAS Events | Students & Educators
0
SAS Innovate on Tour Tokyo 2025 開催のご報告

2025年7月24日(木)に開催された「SAS Innovate on Tour Tokyo 2025」は、大盛況のうちに無事閉幕いたしました。ご来場いただいた皆さまに、心より御礼申し上げます。また、スポンサーの皆さま、そして運営・制作・広報をはじめとする関係各位の多大なるご支援とご尽力に、深く感謝申し上げます。 開催報告として、弊社代表 手島 主税からの基調貢献に関するメッセージを以下に投稿させていただきます。   SASジャパン創立40周年を迎える節目の年に開催致しました「SAS Innovate on Tour Tokyo 2025」ですが、私が代表を担当させていただいてから3度目となりました。この3年間、毎年ご来場いただく規模が増えておりまして、今年は過去最大の規模で終えることができました。改めまして皆様に心から感謝申し上げます。 意志決定と人との関係性の力をデータ&AIで紐付ける、「人中心型イノベーション」のビジョンのもと、意志決定に携わる経営者とフロントラインワーカー(営業、マーケティング、工場長、主計など)が求める具体的なテーマでお届けしました。 SASは「データはそれ自体では価値を生まない。価値を生むのは意志決定である」という信念のもと、多様化したAIのモデルを統計的な手法と機械・強化学習の組み合わせを実行できる高度なアナリティクス技術を進化させてきました。重要なのは、データをいかに意志決定に結びつけ、行動変容を促すかという「プロセス」です。 私たちが提唱する「意志決定のデータパイプライン」は、ビジネス部門の課題提起から逆算して必要なデータを整備するアプローチです。システム先行ではなく、人の知見や問いを起点にすることで、真に活用されるデータ基盤を構築できます。SASは、意味付けされたデータを各部門に合わせて提供し、お客様の意志決定を支援しています。 今年の基調講演では、日本を代表する経営者、DX推進リーダー、アカデミアのリーダーの皆様とスペシャルゲストとしてお迎えし、示唆に富んだパネルディスカッションを実施しました。 最初のパネルでは、ソニー銀行様、中国銀行様、東京海上ホールディングス様の経営リーダーがご登壇。 益々過去に無い規模でデータが生成されていく時代になり、企業の価値を創り出す宝探しである。またこれから現場への権限移譲とデータリテラシーの底上げを進めながら、最終的な価値を生むのは人のシナリオ、判断力であることが改めて強調されました。特に印象的だったのは、金融商品に“共感価値”を織り込むという発想の転換。金融を単なる機能価値から、人の感性に響く体験へと昇華させる挑戦が語られました。 [パネルディスカッションご登壇者(※登壇順)] ソニー銀行株式会社 南 啓二様 株式会社中国銀行 山縣 正和様 東京海上ホールディングス株式会社 生田目 雅史様 株式会社ソウジョウデータ 西内 啓様 未来の学びの探求’Future Ready’のパネルでは、統計学で多くの著書、大学での教えも推進されてきている西内先生をお迎えし、「問いを立てる力」がAI活用の出発点であること、そして経営から現場まで“問い→仮説→検証”のリズムを組織全体で回すことの重要性が共有されました。 また、アストラゼネカ堀江様、NSW竹村様にもご登壇頂きました。 堀江様には最新のSASのテクノロジー、AIを活用いただいたモダイナイゼーションによるコスト最適化とフロントワーカーの効率性アップの具体的な事例をご紹介いただき、多くの方に反響を頂きました。 [関連記事] アストラゼネカが目指す医療・創薬の新たなステージ──実現に不可欠なデータサイエンス部の役割とは? 竹村様には、新たなSASとの製造業界向けの戦略的パートナーアライアンスの発表をご披露いただき、昨今の製造業界における課題へのソリューション(工場と経営DX)をご紹介頂きました。これからの両社によるパートナーシップに弊社も大きく期待しております。 [関連記事] NSW株式会社様との協業の発表について - SAS Japan 私個人的にも、日本を牽引する各業界のリーダー皆様の志、視座の高さ、人間力に感銘致しました!!改めまして、南様、山縣様、生田目様、堀江様、竹村様に感謝申し上げます。皆様のビジョンの具現化の力になるべく、引続きSASジャパンも社を挙げて果敢に挑戦してまいります。 これからのSASジャパンに乞うご期待ください。 SAS Institute Japan株式会社

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data for Good | Data Management | Data Visualization | Fraud & Security Intelligence | Internet of Things | Learn SAS | Machine Learning | Programming Tips | Risk Management | SAS Administrators | SAS Culture | SAS Events | Students & Educators
小林 泉 0
📣SAS Hackathon 2025 まもなく開幕(応募〆切8/31)📣

SAS Hackathon 2025が間もなく開幕 公式サイトはこちら☞ https://www.sas.com/sas/events/hackathon.html はじめに 課題、テーマや使用データ 課題やテーマ、使用データは参加者ご自身で準備いただきます 2023年の日本からの参加チームは、オープンデータを使用したチーム、普段の自社内の取り組みプロジェクトのデータを使用したチームなどがありました 分析環境や、専門スキルの支援などはSAS側で用意されます コミュニケーションに使用する言語 日本からの参加者をサポートするメンターはSAS Japanから日本語を話す社員が担当する予定ですが、エキスパートや他の参加者との交流は英語になります 成果物に使用する言語 成果物(プレゼン動画やプレゼン資料、アプリケーションなど)は英語になります。昨年の日本からの参加チームはそれぞれ、英語でのプレゼン、無音声英語文字のみのプレゼン、英語機械音声など様々な方法で対応されました 作業場所 オンラインでの約1か月間の作業なので、作業場所は、参加チームそれぞれで確保いただきます 2025 キックオフイベントの様子 ソーシャル メディア プラットフォーム経由で視聴する LinkedIn☞https://www.linkedin.com/events/7333469635326984193/ Youtube☞https://www.youtube.com/live/yp008_MVfF4 SAS Hackathonとは 好奇心は私たちの規範です 素晴らしいアイデアは、どこからでも誰からでも生まれます。さまざまな地域から、さまざまな背景やスキルレベルを持つデータ愛好家が集まると、驚くべきことが起こります。これらの優れた頭脳は、私たちの日常生活、ビジネスのやり方、人道的活動への取り組み方を変えるような新しいものを発明するでしょう。好奇心旺盛な頭脳が協力し合うと、世界が勝利するからです。 特長 仲間のプログラマーと協力する  経験豊富なデータ サイエンティストから初心者の技術者、パートナー、SAS エキスパートまで、誰もがクラウド上の SAS® Viya でオープン ソースを使用します。 無料の学習リソースを活用する トレーニング コースや仮想学習ラボを利用して、AI、クラウド環境、業界に関するコーチングを活用できます。 新しいテクノロジーを簡単に試すことができる SAS ハッカソンは、SAS ユーザーだけでなく、初心者や新規参入者の好奇心を刺激します。Python と R の専門知識を持つオープンソース プログラマーでも、そのスキルを SAS Viya

Advanced Analytics | Analytics | Artificial Intelligence | Data Management | Data Visualization | Machine Learning | SAS Administrators
小林 泉 0
データ分析プロセス全体を管理~自己組織的に育てるナレッジのカタログ化とは

自己組織化とは、自然界において個体が全体を見渡すことなく個々の自律的なふるまいをした結果、秩序だった全体を作り出すこと 2010年から存在した解決アイディアがついに実現可能に 今から遡ること十数年前の2010年頃、支援をしていた大手製造業の会社ではすでにデータ分析スキルの社員間でのばらつきと組織全体のスキルの向上、データ分析作業の生産性の向上、人材のモビリティへの耐性としてのデータ分析業務の標準化が課題となっていました。 当時ご相談をいただいた私を含むSASの提案チームは、SASが提供するアナリティクス•ライフサイクル•プラットフォームを活用することで、その問題を支援できることがすぐにわかりました。つまり、ビジネス課題から始まり、利用データ、データ探索による洞察、データ加工プロセス、予測モデリングプロセス、モデル、そしてそれをアプリケーションに組み込むディシジョンプロセスという、一連のアナリティクス•ライフサイクルにまたがるすべての作業を電子的に記録し、全体のプロセスそのものをモデリングし、利活用することで、自己組織的にナレッジが蓄積され、且つ活用されるということです。 しかし、当時のSASだけではない周辺のIT環境、すなわちPCやアプリケーションアーキテクチャなどのインフラ、データの所在、セキュリティ管理などがサイロ化していること、またSAS以外のModelOps環境もシステムごとにアーキテクチャがバラバラすぎたこと、また、お客様社内のデータリテラシーそのものもまだ課題が多かったため、SASを中心としても、実現にはあまりにも周辺の開発コストがかかりすぎたために、提案を断念しました。 時代は変わり昨今、クラウド技術の採用およびそれに伴うビジネスプロセスの変革と標準化が急速に進んでいます。それに歩調を合わせるように、SASの製品も、上記の当時から市場をリードしてきたMLOpsフレームワークをDecisionOpsへと昇華させ、クラウド技術を最大活用すべく、クラウドネイティブなアーキテクチャおよび、プラットフォームとしての一貫性と俊敏性を高めてきました。そしてついに最新版のSAS Viyaでは、アナリティクスライフサイクル全体にわたり、データからデータ分析プロセス全体の作業を電子的に記録し、管理し、活用することが可能となりました。 自己組織的にナレッジを蓄積活用するデータ分析資産のガバナンス 昨今のデータマネージメントの取り組みの課題 詳しくはこちらのブログをご参照いただきたいのですが、多くのケースで過去と同じ過ちを繰り返しています。要約すると、データ分析文化を醸成したい、セルフサービス化を広めたいという目的に対しては、ある1時点のスナップショットでの完成を目的としたデータカタログやDWH/DMのデータモデル設計は問題の解決にはならないということです。必ず5年後にまた別の担当者やプロジェクトが「これではデータ分析しようにもどのデータを使えばわからない、問題だ、整備しよう」となります。 では解決策はなんでしょうか。 静的な情報を管理したり整備するのではなく、日々変わりゆく、どんどん蓄積され、評価され、改善、進化し続ける、データ分析業務に関わるすべての情報を記録統制することです。つまり、以下の三つのポイントを実現することです。各ポイントの詳細は後段でご紹介しています。 ポイント①あらゆるデータ分析資産(ナレッジ)を管理 ポイント②データ品質管理の自動化・省力化とガバナンス ポイント③社内ソーシャルの力による自己組織的情報の蓄積 まずは、それぞれが何を意味しているかを説明する前に、これらを実現するとどのような世界になるのかをユーザーの声によって示してみたいと思います。   個々の自由にデータ分析をしているユーザーによる行動を記録することで、全体を見渡している誰かがヒアリングや調査をして情報を管理することなく、データ分析がどのように行われているかを管理・共有・再利用が可能となるのです。 誰が、どのような目的で、どのデータを、どのように使用したのか、そしてその結果はどうだったのか? このアプリケーションの出した判定結果の説明をする必要がある。このモデルは誰が作ったのか?どのような学習データを使用したのか?どのようなモデリングプロセスだったのか? よく使用されるデータはどれか? そのデータはどのように使用すれば良いのか?注意事項はなにか? データ分析に長けた人は誰か?誰が助けになってくれそうか? 企業全体のデータ品質はどのようになっているか? データ品質と利用パターンのバランスは適切か?誤った使い方をしているユーザーはいないか? など従来、社内勉強会を開催したり、詳しい人を探し出してノウハウを聞いたり、正しくないことも多い仕様書をひっくり返してみたり、そのようにして時間と労力をかけて得られていたデータ分析を自律的に行う際に重要となる社内ナレッジが、自己組織的に形成されるということです。 「情報資産カタログ」とは~一般的な「データカタログ」との違い このような世界を実現する機能をSASでは、「情報資産カタログ」と呼んでいます。データ分析プロセス全体を管理・検索・関連付け・レポートできるようにするテクノロジーです。一般的に言われる、また多くの失敗の原因になる、「データカタログ」と対比するとその大きな違いが見えてきます。 こちらのブログでも述べましたが、データ分析者がセルフサービスでデータ分析を実践したり、初学者がなるべく自分自身で情報収集して、まずは標準的なデータ分析作業をマスターしたりするためには、既存ナレッジを活用する必要があります。一方で、そのようなナレッジは従来一部の優秀なデータ分析者に聞かないとわからなかったり、あるいはITシステム部門に質問して回答までに長い時間を要してビジネス機会を逸してしまう、という結果を招いていました。 既存ナレッジとは、どのようなデータを、どのような意図で、どのような目的で、どのように使い、どのようなアウトプットを得たかという一連の「考え方とやり方」であり、これは管理者が一時的にデータ分析者にヒアリングして「データカタログ」を整備して終わり、というものではなく、日々データ分析者たちの中で自律的に情報が作られていくものです。 ポイント①あらゆるデータ分析資産(ナレッジ)を管理 SAS Viyaでは、上述のアナリティクスライフサイクル各ステップのオブジェクトがすべて一元的に記録・管理されます。日々、新しく作られるレポート、データ加工プロセス、作成されるデータマートの情報が、自動的に管理され検索対象になっていきます。このようにアナリティクス・ライフサイクルの各ステップをすべて管理することで、データ、そのデータを使用しているレポート、そのデータを使用しているデータ加工フロー、その出力データ、さらにはそれを学習データとして使用している予測モデリングプロセスと作成されたモデル、これらを関連付けて見ることが可能となります。それにより例えば、ある目的に使用するデータを探している場合、参考にする業務名やプロジェクト名で検索をすることで、関連するレポートや、データ加工プロセスにたどり着き、そこから使用データやそのデータの使い方にたどり着くという効率的な情報の探し方が可能となります。 もちろん、この機能は昔からあるインパクト・アナリシス機能として、ITシステム部門が、データへの変更の影響調査ツールとして使用することも可能です。 ポイント②データ品質管理の自動化・省力化とガバナンス データ分析を組織的に行う際に気にすべきポイントの一つは、その正確性です。正しいマスターデータを使用しているか、適切な品質のデータを使用しているかは、最終的なアクションや意思決定の精度すなわち収益に影響します。また、結果に対する説明責任を果たすうえでもアクションに使用したデータの品質は属人的ではなく、組織的に管理されている必要があります。またデータ品質を組織的に管理することにより、データ分析の最初に行っていた品質確認という作業が省力化できます。また、属人的に行っていた品質確認作業も標準化されるため、組織全体のデータ分析作業の品質が向上します。 あるお客様では、DWHに格納するデータのETL処理において施すべき処理が実施されていないというミスがあるものの、データの数やETL処理があまりにも多いためそのミスを発見することが困難であるという状況にありました。網羅的な品質管理および品質レポートによってそのようなミスの発見が容易になります。 ポイント③社内ソーシャルの力による自己組織的情報の蓄積 前述のポイント①により基本的にはデータ分析者個人個人の自律的な活動が自動的に記録され、自己組織的に組織全体のナレッジとて蓄積され共有・再利用可能な状態が作られます。これは、データ分析者個人個人が特に意識しなくても自動的に実現できます。それに加えて、さらに意識的にこのプラットフォームを利用することで、蓄積されるナレッジに深みが増します。 例えば、あるビジネス課題をデータ分析で解決使用する場合のスタートは、「問い」です。上述のアナリティクス・ライフサイクルの一番左のスタートにあるものです。その際には、仮説設定をするためや仮説を検証する目的で、様々な角度から「データ探索」を行います。この初期のデータ探索プロセスは、その後のデータ加工やモデリングの根拠になっているため、ナレッジとしてまた説明責任の材料としてはとても重要になります。必ずしも最終的に使用したデータと同じデータを使うとも限らないので、自動的には他のデータ分析資産とは関連づきません。そのような探索プロセスも下記の図のように、同じプロジェクトフォルダに保存しておくことで、関連オブジェクトとして活用することが可能となります。また、プロアクティブに自信が使用したデータやレポートにコメントや評価を付与することで、より価値の高いナレッジへと育つことになります。 昨今企業内SNSなどで、オフィスツールの使い方などノウハウを共有をされている企業・組織もあるかと思います。それを全社規模のアナリティクス・プラットフォームで行うことで、データ分析に関わるナレッジをユーザー同士で培っていくイメージです。 まとめ 「このデータはこの目的に使えますか?」「あ、それはこの情報がないので使えないんですよ。こちらのデータを私は使ってますよ」データ分析者の間でよく交わされる会話です。この問いにいかに迅速に答えられるかが、データ分析の効率性と正確性を高めます。「情報資産カタログ」はまさにこの問いに答えるための機能なのです。

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Machine Learning | SAS Culture | SAS Events | Students & Educators
CTOからのあなたへの招待状~#HackinSASを開催

CTOからのあなたへの招待状 ~リアルワールドのためのグローバルデータサイエンス・ハッカソンイベントを開催~ 世界中のどこかにいる有志のあなたへ 従来からSASをご愛顧頂いている皆様、そして、これから新たに出会う皆様、こちらはSAS Instituteでございます。今回は、非常にInspired+Greatなニュースをお届けさせていただきます。 それは、SASがグローバルでHackinSASというデータサイエンス・ハッカソンイベントを開催するということです! 今回のイベントでは、グローバルで参加者を募集しています。もちろん、従来のSASユーザのみならず、開発者やオープンソースユーザ、学生の方々、Startup企業の方々、またはテクニカルパートナーの方々、誰でも参加可能なイベントです。また、今回イベントの主旨としては、皆様の周りにあるデータを用いて、そのデータから有用な情報を得て、リアルワールドのビジネス課題・社会問題を解決するためのソリューションや、よりクリエイティブなデータの使い道を発見することを目指しています。詳細は後述するイベント詳細情報をご参照ください。 SASは長年、データから有用な情報を得て、その情報をリアルワールドの社会問題・環境問題、そしてビジネス課題解決に貢献できる製品やソリューション、そしてサービスを開発し、そのナレッジを貯蓄してきました。また、たくさんのユーザの方々との関わり合いの中で得られた情報などもとても有益なものでした。ハッカソンイベントはまさに、そのような様々なナレッジや発想を持っている皆様に切磋琢磨できる舞台を提供しています。 まずSASのエグゼクティブ・バイス・プレジデント兼最高執行責任者兼最高技術責任者のOliver Schabenbergerからのメッセージをご覧ください。 クリック! では、イベント詳細情報は下記となります。  1.開催スケジュール ハッカソン全期間スケジュール 2020年12月17日-2021年2月15日 チームとテーマの登録期間。 この期間中に、あなたのチームを結成しましょう。そして、課題を定義し、サマリをご提出ください。 2021年1月―2月 リソース確保期間。 この期間中に、ハッカソンをするための無料イネーブルメントリソースを活用して、優位に立ちましょう。 2021年3月 ハッカソン正式開始期間。 この期間中に、あなたとチームメンバーの創造性を輝かせる時がきます。データとSASを使って課題を解決しましょう。 2021年4月 最終ラウンド期間。 最終ラウンドに参加できるチームが選定され、SAS Vector Labsチーム(SAS Innovation Hub)に紹介され、更なる課題解決のためのアプリケーション開発を行うことが可能です。 Virtual SAS® Global Forum 2021(2021年春に開催予定) 2021年のSAS Global Forumで優勝者の結果が公開されます!   事前ライブキックオフミーティング 2021年1月13日13:00 – 14:00オンラインで開催 開催概要: SASのエグゼクティブ・バイス・プレジデント兼最高執行責任者兼最高技術責任者のOliver Schabenbergerが、この他に類を見ないグローバルハッカソンとは何か、そしてビジネスの課題解決や社会貢献のためにアナリティクス、AI、オープンソースをどのように創造的な方法で活用できるのかについてお話します。 ハッカソンズ・インターナショナルのCEOであるAngela Bee ChanとSASのプロダクト・マーケティング・マネージャーであるMarinela Profiの魅力的な対談が行われます。彼らはこのハッカソンの中でできるコラボレーションと、HackinSASが単なる競争以上の価値あるものであるかをお話します。

Advanced Analytics | Analytics | Artificial Intelligence | Data for Good | Data Visualization | Internet of Things | Machine Learning | SAS Culture
小林 泉 0
SAS社員としての誇りーミツバチ・森林・絶滅危惧種の保護や医療への貢献にAI/アナリティクスを活用

SASの一つの顔は、アナリティクスで営利目的の意思決定を支援 筆者は、SAS社員として、20年以上に渡りアナリティクスおよびAIで企業・組織を支援してきました。 金融機関における、リスク管理や債権回収の最適化 通信業における、顧客LTV最大化、ネットワーク最適化やマーケティング活動の最適化 製造業における、需要予測、在庫最適化、製造品質の向上や調達最適化 流通・小売業における、需要予測やサプライチェーン最適化 運輸業における、輸送最適化や料金最適化 ライフサイエンス・製薬企業における、業務の最適化 官公庁における、市民サービス向上のための不正検知 など、様々な業種・業務においてアナリティクスの適用によるお客様のビジネス課題の解決に携わってきました。営利目的(ここでは市民サービスの向上も含めることにします)の企業・組織におけるアナリティクスの活用目的は主に以下の3つに集約されます。 収益(売り上げ)の増大 コストの低減 リスク管理 アナリティクスは、いわゆる「データ分析」を手段とし、過去起きたことを把握して問題を定義し、次に将来を予測し、様々な選択肢の中から最適な予測に基づいて意思決定をしていくことになりますが、その過程の中で、起きてほしい事象を予測して促進したり、起きてほしくない事象を予測して防いだり、その予測のばらつきを管理したりということを行っていきます。 このような営利目的でのアナリティクスの活用はSASという会社が誕生した40年以上前から行われており、基本的な活用フレームワークは変わっていません。IT技術の進化によって、利用可能なデータの種類や大きさが、増えてきただけにすぎないと言えます。例えば、昨今のAIブームの代表格であるディープラーニングですが、ディープラーニングという処理方式の進化と、GPUという処理機械の進化によって、非構造化データをより良く構造化しているものであり、もちろんモデリング時のパラメータ推定値は何十億倍にはなっていますが、モデリングのための1データソースにすぎません。もう少しするとディープラーニングも使いやすくなり、他の手法同様、それを使いこなすあるいは手法を発展させることに時間を費やすフェーズから、(中身を気にせず)使いこなせてあたりまえの時代になるのではないでしょうか。 SASのもう一つの顔、そして、SAS社員としての誇り、Data for Goodへのアナリティクスの適用 前置きが長くなりましたが、SAS社員としてアナリティクスに携わってきた中で幸運だったのは、データの管理、統計解析、機械学習、AI技術と、それを生かすためのアプリケーション化、そのためのツール、学習方法や、ビジネス価値を創出するための方法論や無数の事例に日常的に囲まれていたことだと思います。それにより、それら手段や適用可能性そのものを学習したり模索することではなく、その先の「どんな価値創出を成すか?」「様々な問題がある中で優先順位の高い解くべき問題はなにか?」という観点に時間というリソースを費やすことができていることだと思います。そのような日常の仕事環境においては、アナリティクスの活用を営利目的だけではなく、非営利目的の社会課題の解決に役立てるというのは企業の社会的責任を果たす観点においても必然であり、Data for Goodの取り組みとしてSAS社がユニークに貢献できることであり、SAS社員として誇れるところだと考えています。 最終的に成果を左右するのは「データ」 そして、もう一つの真実に我々は常に直面します。クラウド・テクノロジー、機械学習、ディープラーニングなどの処理テクノロジーがどんなに進歩しようともアナリティクス/AIによって得られる成果を左右するのは「データ」です。どのようなデータから学習するかによって結果は決まってきます。 IoT技術で収集したセンサーデータは知りたい「モノ」の真実を表しているだろうか? 学習データに付与されたラベル情報は正確だろうか? 学習データは目的を達成するために必要な集合だろうか? そのデータは顧客の心理や従業員の心理をどこまで忠実に表しているだろうか? 特に、Data for Goodのチャレンジはまさにそのデータ収集からスタートします。ほとんどの場合、データは目的に対して収集する必要があります。そして、下記の取り組みのうち2つはまさに、我々一人一人が参加できる、市民によるデータサイエンス活動として、AI/アナリティクスの心臓部分であるデータをクラウドソーシングによって作り上げるプロジェクトです。 Data for Good: 人間社会に大きな影響を及ぼすミツバチの社会をより良くする 概要はこちらのプレスリリース「SAS、高度なアナリティクスと機械学習を通じて健康なミツバチの個体数を増大(日本語)」をご参照ください。 ミツバチは、人間の食糧に直接用いられる植物種全体の75%近くに関して受粉を行っていますが、ミツバチのコロニーの数は減少しており、人類の食糧供給の壊滅的な損失につながる可能性があります。この取り組みでは、IoT, 機械学習, AI技術, ビジュアライゼーションなどSAS のテクノロジーを活用し、ミツバチの個体数の保全/保護する様々なプロジェクトを推進しています。この取り組みは以下の3つのプロジェクトから成り立っています。 ミツバチの群れの健康を非侵襲的に監視 SASのIoT部門の研究者は、SAS Event Stream ProcessingおよびSAS Viyaソフトウェアで提供されているデジタル信号処理ツールと機械学習アルゴリズムを用いて、ミツバチの巣箱の状態をリアルタイムで非侵襲的に追跡するために、生物音響監視システムを開発しています。このシステムによって養蜂家は、コロニーの失敗につながりかねない巣箱の問題を効果的に理解し、予測できるようになります。 関連ページ:5 ways to measure

Advanced Analytics | Machine Learning | SAS Events
SAS Global Forum 2019 論文紹介シリーズ 第2回「PythonからSAS9を活用するコーディング事例紹介」

前回に引き続き、SAS Global Forum 2019で公開された論文をご紹介します。今回は、SASユーザを含め、SAS言語とオープンソース言語の機能を共に活用することで、様々なビジネス課題に対応できるようなコーディング事例をいくつかピックアップします。 1.Deep Learning with SAS® and Python: A Comparative Study ご存知の通り、SASはディープランニングに関する専門性の高いかつ豊富な機能と製品を提供しています。この論文では、SASとPythonに対し、それぞれ違うデータタイプ(例えば:構造化と非構造化、イメージ、テキスト、シーケンシャルデータ等々)を使ったディープラーニングのモデリングを比較する論文となります。主にSAS環境でのディープランニングフレームワーク、そして、SASとPython言語のディープランニングプログラミングの違いによって、それぞれのメリットとデメリットの紹介となります。 2.Utilization of Python in clinical study by SASPy Pythonは近年最も使われているプログラミング言語になってきました。そして現在、機械学習とAI領域でもよく使われています。Pythonの一番のアドバンテージはその豊かなライブラリを通じ、多種多様な分析をインプリメントできることです。SASは臨床研究領域で最も強力な分析製品でありながら、さらにPythonを使うことによって、そのレポーティング機能、例えば、データ管理、データ可視化を拡張できます。これもSASプログラマーユーザのキャリアに対し、潜在的なメリットです。その様な背景において、SASPyはその可能性を実現します。SASPyはPythonコードの中でSASのセッションをスタートできるPythonパッケージライブラリとなります。この論文では、基本的なSASPyの使用方法とSASのデータセットを処理するヒントについて紹介しています。そして、Pythonを使って、臨床研究で使えそうなレポーティング機能について検討します。 3.Everything is better with friends: Executing SAS® code in Python scripts with SASPy SASPyはSASがPythonプログラミング用に開発したモジュールで、SASシステムに代わるインタフェースを提供しています。SASPyを通じて、SASプロシージャはPythonスクリプトと構文で実行することができ、かつ、SASデータセットとそれに相当するPythonデータフレームの間にデータを転送することも可能です。それにより、SASプログラマーはPythonの柔軟性を利用してフロー制御を行うことができ、PythonプログラマーはSAS分析をスクリプトに組み込むこともできます。この論文では、Pythonスクリプト内で通常のSASコードとSASPyの両方を使用した一般的なデータ分析タスクの例を幾つか紹介し、それぞれの重要なトレードオフを強調し、多種プログラミング言語ユーザになれることの価値を強調しています。SAS University Edition用のJupyterLabインタフェースを使用し、それらの例を再現するための説明も含まれています。それらのSASとPythonのインテグレーション例はJupyter Notebookとしてダウンロードできます。 ダウンロード:https://github.com/saspy-bffs/sgf-2019-how 4.Modeling with Deep Recurrent Architectures: A Case Study of

Machine Learning | Students & Educators
0
オンラインコース「Machine Learning Using SAS Viya」のご紹介(Week5・6)

本記事では、SASのオンライン学習コース「Machine Learning Using SAS Viya」について引き続きご紹介します。このコースはGUI上で機械学習理論を学習できる無料のプログラムです。ご登録方法やWeek1・2については前々回の記事を、Week3・4については前回の記事をご参照ください。最終回となる本記事では、Support Vector Machineを扱うWeek5と、Model Deploymentを扱うWeek6をご紹介します。 Week5:Support Vector Machines Week1・2、Week3・4と同様に、通信事業会社の顧客解約率をテーマに機械学習の具体的手法について学習します。Week5ではサポートベクターマシンという手法を用い、解約可能性に基づき顧客を分類するモデルを作成します。 ・Building a Default Support Vector Machine Model Week5で扱うトピックはサポートベクターマシン(SVM)です。画像認識や文字認識、テキストマイニングで用いられることが多い手法で、複雑なパターンもフレキシブルに表現できるものの、結果の解釈が難しいという特徴を持ちます。分類問題に用いられることが多く、最も簡単な例としては、下の画像のように二種類の出力を分ける直線が挙げられます。この例では分類可能な直線は何通りも考えられますが、マージン最大化という手法を用いて最適な分類線を選択します。本セクションではこれらのSVMの基礎を学習しましょう。 ・Modifying the Model Methods of Solution 本セクションでは、あるデータセットが通常のSVMで分類できない場合に用いるソフトマージンという手法を学習します。通常のSVMとは異なり、この手法は分類の誤りをある範囲内で許容しますが、それぞれの誤りに対しペナルティを課します。合計のペナルティを最小化する境界を最適な分離平面とみなし、ラグランジュの未定係数法を用いて所望の境界を推定します。ペナルティに関するパラメータを変更しながら、モデルの性能を確認しましょう。 ・Modifying the Model Kernel Function 線形分離不可能なデータでも、ある写像により超平面での分離可能な高次元の特徴空間上の点に変換することでSVMが適用可能になります。この際、その特徴空間内における内積は、カーネル関数と呼ばれるものの評価に置き換えられる(カーネルトリック)という性質を用いると、計算量の爆発を防ぎSVMが実装可能です。このカーネル法を用いて、モデルの性能を改善してみましょう。SVMで扱うのはあくまで超平面であるため幾何的な解釈可能性があると言われるものの、多くの場合、依然として十分に複雑で結果の解釈が困難です。そこで解釈を助ける指標としてICEプロットや変数の重要度について学習します。 Week6:Model Deployment Week1~5ではデータの前処理やモデルの作成について学習してきました。最終回となるWeek6では、Analytics LifecycleのDeploymentの段階を学習します。 ・Model Comparison and Selection 今まで複数のモデルを学習してきましたが、すべての状況において最適なモデルは存在しません。様々な観点でモデル間比較を行い最も高性能なモデルをチャンピオンモデルとして採用します。主に数値的スコアに基づく比較が行われますが、その際、ROC曲線・AUC値を用いたモデル間性能比較や、ゲインチャート(CPHチャート)・LIFTチャートを用いたモデルの採用・不採用の間での比較などが行われます。これらの指標に加えて、ビジネスの文脈に応じ、学習や評価のスピード・実装可能性・ノイズへの頑健性・解釈可能性などを判断基準にすることも考えられます。 ・Model Scoring and Governance Week1ではData, Discovery, DeploymentからなるAnalytics Lifecycleの概要を学習しました。これまで顧客の解約予測モデルを作成してきましたが、Analyticsはそのモデルを使用して終わりではありません。ビジネスの状況は刻一刻と変化し、それに伴って新たなデータが蓄積されていきます。先ほど決定したチャンピオンモデルがいかに高性能であっても、一定期間後に同様の性能を持つかは決して自明ではなく、モデルのモニタリングを通して性能を逐一確認する必要があります。並行して、新たな状況に関してDataの段階から分析します。その際、新たなチャレンジャーモデルを作成し、現行のチャンピオンモデルとの性能比較によりモデルを改善する手法や、新たに入手したデータを用いて逐一モデルのパラメータを調整するオンラインアップデートという手法が用いて、モデルを高性能に維持します。モデル作成後も継続してDataやDiscoveryの作業を行うことが、Analytics

Machine Learning | Students & Educators
0
オンラインコース「Machine Learning Using SAS Viya」のご紹介(Week3・4)

前回に引き続き、SASのオンライン学習コース、「Machine Learning Using SAS Viya」についてご紹介します。これはGUI上で機械学習理論を学習できる無料のプログラムです。ご登録方法やWeek1・2に関しては前回の記事をご参照ください。本記事ではWeek3・4の内容をご紹介します。Week3ではDecision Treeについて、Week4ではNeural Networkについて取り扱います。 Week3:Decision Tree and Ensemble of Trees Week1・2と同様に、通信事業会社の顧客解約率をテーマに機械学習の具体的手法について学習します。Week3では、ディシジョンツリーという手法を用いて、解約しそうな顧客を分類するモデルを作成します。 ・Building a Default Decision Tree Model Week3は右図のようなディシジョンツリーについて学習します。これは、図のように各ノードに与えらえた条件式に基づき入力データを分類するモデルです。結果の解釈が容易である点が大きな特徴ですが、オーバーフィッティングに陥りやすいという欠点もあります。デモを参考に基本的なディシジョンツリーを作成しましょう。   ・Modifying the Model Tree Structure ディシジョンツリーはパラメータとして木の構造を変更する事ができます。最大の深さや子ノードの数を変えると木の大きさが変わり、葉の最大要素数を減らすと分割が細かくなります。データの複雑さや過学習などの観点から各パラメータの及ぼす影響を学習し、実際に条件を変更して結果を比べてみましょう。 ・Modifying the Model Recursive Partitioning ディシジョンツリーの作成手順について学習します。まず、ある一つの集合を複数の集合へ分割する基準(不等式など)を作成します。この際、すべての分割方法を考え、その中から要素を最も適切にグループ化できる基準を選択します。例えば動物をグループ化する下の例については、多くの動物が混じっている上の状態よりも、シマウマの比率が高い下の状態のほうが適切とみなせます。ジニ係数やエントロピーを用いると、このような複数のグループの純度を数値的に比較できます。以上のようなグループ化手順を順々に繰り返し、最終的に一つの木構造を作成します。再帰的分割と言われるこの手法の詳細や、分割選択基準となるエントロピー・ジニ係数について学習し、ディシジョンツリーの理論的構造を把握しましょう。 ・Modifying the Model Pruning ディシジョンツリーは、サイズが過度に大きいとオーバーフィッティングを引き起こし、逆に過度に小さいと十分な汎化性能が得られません。そこで、まず最大のツリーを作成した後、重要でないノードを切り落としていくことでサイズを段階的に小さくし、最終的にバリデーションデータに対するスコアが最大となるサイズのツリーを採用します。プルーニングと言われるこの手法を実践しましょう。ツリーの大きさなどモデルに対して外部から設定する条件はハイパーパラメータと言われ、モデルの性能を高めるにはその最適化(チューニング)が不可欠ですが、本セクションではそれを自動的に行う手法も学習します。   ・Building and Modifying Ensembles of Trees ディシジョンツリーは入力データの影響を受けやすく、微小な変化に対しても大きく構造を変化させるため、安定した構造を取りません。しかし、一般にツリーの構造が変わったとしてもモデルの性能に大きな差が生じないという特徴があります。この性質を活用して、複数の構造のツリーを作成し、その結果を合わせて予測を行うアンサンブルという手法が用いられます。本セクションでは、その代表的手法であるバギング・ブースティング・勾配ブースティング・フォレストについて学習します。また、これらのモデルを実装し、チューニング後のスコアの比較を行います。   Week4: Neural

Machine Learning | Students & Educators
0
オンラインコース「Machine Learning Using SAS Viya」のご紹介(Week1・2)

現在、機械学習が大ブームを巻き起こしており、各種ビジネスへ応用拡大の勢いはとどまるところを知りません。一方で、「“機械学習”という名前は聞くけど、よくわからない…。」、「“機械学習”について学んでみたいけど、プログラミングに自信はない…。」などと考えている方も少なくないはずです。そこで本記事では、煩わしいプログラミングなしで機械学習が学べる「Machine Learning Using SAS Viya」という学習コースについてご紹介します。 「Machine Learning Using SAS Viya」は、オンライン学習プラットフォーム、「Cousera」のコースの一つです。SAS Viya for LearnersというSAS の教育用環境を使用し、オンライン上で実際に手を動かしながら機械学習の基礎を学べます。GUIでの操作が基本であるため、プログラミングに自信のない方でも取り組めることが特徴です。本コースは六週間分のパートに分かれており、無料で教材の内容全ての閲覧が可能です。また、コースを購入すると採点機能の利用や修了証の発行などの機能も利用可能です。コースの言語は英語で、コース内動画は英語字幕に対応しています。 シラバスは以下のとおりです。 Week1:Getting Started with Machine Learning using SAS® Viya® Week2:Data Preparation and Algorithm Selection Week3:Decision Tree and Ensembles of Trees Week4:Neural Networks Week5:Support Vector Machine Week6:Model Deployment 本記事ではWeek1・Week2の内容を各セクションごとにご紹介します。 Week1:Getting Started with Machine Learning using SAS® Viya®

Advanced Analytics | Analytics | Artificial Intelligence | Data Visualization | Machine Learning
SAS Viya: ビジュアルパイプラインでスコアリング

SAS Viyaでは、Model Studioを使用し、機械学習のモデル、時系列予測のモデル、テキストマイニングのモデルをGUIベースの簡単マウス操作で作成することができます。モデル生成プロセスをグラフィカルなフロー図として描き、実行するだけです。このフロー図のことを「パイプライン」と呼んでいます。 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」では、モデル生成と精度評価の基本的な流れを紹介しましたが、今回は、生成したチャンピオンモデルに新しいデータを当てはめてインタラクティブにスコアリングを実行する手順を紹介します。また、スコアリング結果のデータの探索や、エクスポートまで試してみましょう。 「SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)」で作成したパイプラインでは、勾配ブースティングのモデルの方が精度が高い=チャンピオンモデルだと判断されました。 それでは、このモデルに新しいデータを当てはめてスコアリングを実行してみましょう。 まず、画面左側の機能ノードリストの「その他」セクション内にある「データのスコア」を「勾配ブースティング」ノード上にドラッグすると、「勾配ブースティング」ノードの下に「データのスコア」ノードが追加されます。 「データのスコア」ノードを選択し、画面右側で以下の項目を指定します。 ・モデルに当てはめるデータテーブル名 ・スコアリング結果データの出力先ライブラリとテーブル名 「データのスコア」を右クリックし、表示されるメニューから「実行」をクリックすると、スコアリングが実行されます。 スコアリング処理が完了すると「データのスコア」ノード上に緑色のチェックマークアイコンが表示されます。 それでは、スコアリング結果のデータを見てみましょう。 「データのスコア」ノードを右クリックし、表示されるメニューから「結果」を選択します。 すると、データのスコアの結果画面が表示され、「出力データ」タブ内で、データの中身を確認することができます。「予測:BAD=1」列に、顧客ごとの延滞確率に相当するスコア値が表示されています。 それでは、このデータを探索してみましょう。 「探索とビジュアル化」アイコンをクリックし、 表示される画面内で、このデータを探索用に保存する先のライブラリとテーブル名を指定し、「探索とビジュアル化」ボタンをクリックします。 すると、このデータに基づき、「SAS Visual Analytics – データ探索とビジュアル化」画面が表示され、データ探索やレポーティングが可能になります。 例えば、スコア値である「予測:BAD=1」変数と「資産に対する負債の割合」変数の関係性を探索したり、 スコア値が0.7以上の顧客データをエクスポートして、二次活用したり、等々も簡単です。 以上のように、SAS Viyaでは、データの準備はもとより、モデル生成からスコアリング、そして、スコアリング結果データの探索からエクスポートまでをGUIベースでシームレスに実施することができるんですね。 ※Enterprise Open Analytics Platform 「SAS Viya」 を知りたいなら「特設サイト」へGO! ※「ビジュアルパイプラインでスコアリング」は、SAS Viya特設サイトにデモ動画を近々公開予定です。

1 2 3 4

Back to Top