The DO Loop
Statistical programming in SAS with an emphasis on SAS/IML programs
Recently, I was asked whether SAS can perform a principal component analysis (PCA) that is robust to the presence of outliers in the data. A PCA requires a data matrix, an estimate for the center of the data, and an estimate for the variance/covariance of the variables. Classically, these estimates

A SAS customer asked, "I computed the eigenvectors of a matrix in SAS and in another software package. I got different answers? How do I know which answer is correct?" I've been asked variations of this question dozens of times. The answer is usually "both answers are correct." The mathematical

Last week I blogged about the broken-stick problem in probability, which reminded me that the broken-stick model is one of the many techniques that have been proposed for choosing the number of principal components to retain during a principal component analysis. Recall that for a principal component analysis (PCA) of

A SAS user needed to convert a program from MATLAB into the SAS/IML matrix language and asked whether there is a SAS/IML equivalent to the fliplr and flipud functions in MATLAB. These functions flip the columns or rows (respectively) of a matrix; "LR" stands for "left-right" and "UD" stands for

A classical problem in elementary probability asks for the expected lengths of line segments that result from randomly selecting k points along a segment of unit length. It is both fun and instructive to simulate such problems. This article uses simulation in the SAS/IML language to estimate solutions to the

For a time series { y1, y2, ..., yN }, the difference operator computes the difference between two observations. The kth-order difference is the series { yk+1 - y1, ..., yN - yN-k }. In SAS, the DIF function in the DATA step computes differences between observations. The DIF function