Retail

Data Visualization | Learn SAS | Programming Tips
Sanjay Matange 0
Tips and tricks: Segmented discrete axis

The previous post on Multiple Blank Categories showed how to include multiple blank categories on the axis.  But, given the purpose for this was to separate different segments in the data, I also included ideas on how to segmented a discrete axis using reference lines or Block Plot.  A similar idea

Data Visualization | Learn SAS | Programming Tips
Sanjay Matange 0
Tips and tricks - Multiple blank categories on axis

Off and on, users have expressed the need to include multiple blank categories on a discrete axis.  Often, this is desirable to separate groups of bars (or categories) in a graph due to some difference their definition.  Such a case was discussed in this blog article on using non breaking

Data Visualization | Learn SAS | Programming Tips
Sanjay Matange 0
New Features in SAS 9.40M5 - Gradient fills

ODS Graphics procedures primarily strive towards the following goal:  "Make simple graphs easy and complex graphs possible".   SGPLOT procedure allows you create simple graphs with a single plot statement, and create complex graphs by layering together or combining multiple plot statements.  Generally, the appearance follows the guidelines set by industry

Data Visualization | Learn SAS | Programming Tips
Sanjay Matange 0
New features with SAS 9.40 M5

SAS 9.4 maintenance release 5 was released on Sept 19, 2017.  This release includes many new items including integration with SAS Viya and SAS Studio, a web application for SAS development.  Also Included with this release are some cool new features in the graphics domain, some of which were requested

Analytics | Data Visualization | Learn SAS | Programming Tips
Sanjay Matange 0
Getting started with SGPLOT - Part 8 - Horizontal HighLow Plot

On a recent visit to an In-House Users Group meeting at a Pharmaceutical company, I presented a 1/2 day seminar on creating Clinical Graphs using SG Procedures.  Polling the audience for their experience with these procedures indicated that many SAS users are not familiar with these new ways to create graphs. So,

Advanced Analytics | Machine Learning
Charlie Chase 0
Is demand sensing and shaping a key component of your company’s digital supply chain transformation?

Depending on who you speak with you will get varying definitions and opinions regarding demand sensing and shaping from sensing short-range replenishment based on sales orders to manual blending of point-of-sales (POS) data and shipments.        Most companies think that they are sensing demand when in fact they are

Data Management
Rainer Sternecker 0
Bei DS-GVO „Auf-Sicht“-Fahren? Besser nicht!

Die EU-Datenschutz-Grundverordnung kommt näher – ausweichen oder draufhalten? In den letzten Wochen hatte ich die tolle Gelegenheit mit zahlreichen Kunden und Partnern über die neue EU-Datenschutz-Grundverordnung (DS-GVO) zu sprechen. Die Meinungen und Erwartungen sind dabei wirklich außerordentlich breit gefächert. Das ist nicht weiter verwunderlich, denn das Thema hat zuletzt stark an

Advanced Analytics | Customer Intelligence | Machine Learning
Maarten Oosten 0
Bots, collusion and accountability in pricing

In the recent article, “Price-bots can collude against consumers,” the Economist discusses the consumer effects of prices set by price-bots. The article starts with an example of gasoline pricing strategies on Martha’s Vineyard. With a small number of gas stations on the island, the price-bots can cover all competitor prices frequently

Analytics | Data Management
SAS Korea 0
스트리밍 데이터(Streaming Data): 무한한 가능성의 시작

모든 것을 실시간으로 실행하고, 실시간으로 평가하는 바야흐로 ‘스트리밍 시대’입니다. 길을 걷다가 들리는 음악을 그 자리에서 검색하고 스트리밍으로 재생해 듣습니다. 스마트폰 메신저나 소셜 미디어(SNS)를 통해 바로 공유할 수도 있죠. 월드컵과 올림픽 등 스포츠 경기는 물론 대선 토론과 개표 현황 등 정치 이벤트까지 케이블 TV나 페이스북 라이브를 통해 실시간으로 시청합니다. 기업에서는 어떨까요? 매월,

Advanced Analytics | Analytics | Data Management | Machine Learning
Charlie Chase 0
At the end of the day, it’s all about analytics-driven forecasting

Analytics-driven forecasting means more than measuring trend and seasonality. It includes all categories of methods (e.g. exponential smoothing, dynamic regression, ARIMA, ARIMA(X), unobserved component models, and more), including artificial intelligence, but not necessarily deep learning algorithms. That said, deep learning algorithms like neural networks can also be used for demand forecasting,

Analytics | Customer Intelligence
Sandra Hernandez 0
Así es el profesional de Marketing de hoy

En el lenguaje de marketing, mucho hablamos de implementar estrategias digitales omnichannel y gestionar la experiencia de cliente de extremo a extremo. Si bien hay bastantes soluciones (mapas de viaje del cliente, diagramas de ciclo de vida) y tecnologías (motores de optimización, procesamiento de secuencias de eventos y automatización de marketing)

Analytics
Sandra Hernandez 0
Experimente las nuevas posibilidades: Precisión al ver con claridad

Ya no se trata de imaginar cosas. Cada día las empresas enfrentan miles de desafíos. Desde decisiones de negocio hasta procesos operativos, pasando por la manera de relacionarse con sus clientes o de preparar los informes de cumplimientos regulatorios o cuidarse de los ataques o fraudes. No son escenarios que

Data Visualization
Sanjay Matange 0
Category highlighting

When presenting information in form of a graph we show the data and let the reader draw the inferences.  However, often one may want to draw the attention of the reader towards some aspect of the graph or data.  For one such case, a user asked how to highlight one

Advanced Analytics | Analytics | Machine Learning
Charlie Chase 0
Straight talk about forecasting and machine learning

Are you caught up in the machine learning forecasting frenzy? Is it reality or more hype?  There's been a lot of hype about using machine learning for forecasting. And rightfully so, given the advancements in data collection, storage, and processing along with technology improvements, such as super computers and more powerful

Customer Intelligence
고객 인텔리전스(CI), 디지털 채널과 데이터를 통해 진화하는 마케팅 동력

여러분은 어떻게 쇼핑하나요? 온라인 쇼핑몰, 모바일 앱, 소셜 미디어 등 디지털 기술의 발전과 함께 현대인의 쇼핑 방법은 점점 더 다양해지고 편리해지고 있습니다. 동시에 기업이 고객과 만나는 접점은 그 어느 때보다 많아졌는데요. 그만큼 기업의 디지털 마케팅 전략 또한 여러 기술 요소와 방법론이 혼용되는 하나의 큰 생태계로 발전을 거듭하고 있습니다. 그 생태계의 기반에 디지털

Advanced Analytics | Analytics | Customer Intelligence | Data Management | Internet of Things
Andreas Gödde 0
Die Uhr tickt – Zeit für einen Umsetzungsplan zur EU-Datenschutz Compliance

In nahezu einem Jahr findet die neue EU-Datenschutz-Grundverordnung (DSGVO) Anwendung. Wer bisher dachte, das hat noch Zeit und wird nicht so heiß gegessen, wie es gekocht wird, der wurde von der Ankündigung des Bayerischen Landesamts für Datenschutzaufsicht überrascht: Bayern kündigt schon erste Kontrollbesuche an. „Abwarten und nichts tun ist mehr

Advanced Analytics | Analytics | Customer Intelligence
Scott Nalick 0
When everything is analytics, nothing is analytics...?

The widespread adoption of the term "analytics" reminds me of the evolution of the term "supply chain management." Initially the term focused on supply chain planning. It involved demand and supply balancing and the heuristics and optimization tools that came out of advanced planning and scheduling. Over time practically everything was included

Advanced Analytics | Analytics | Data Management | Internet of Things
Andreas Becks 0
Analytics für IoT - So wird Vision zur Realität

Kennen Sie Kevin Ashton? Der britische Technologie-Pionier hat am Massachusetts Institute of Technology (MIT) einen internationalen Standard für RFID mitbegründet. Was aber vielleicht noch wichtiger ist: Vor fast 20 Jahren hatte er eine Vision von Computern, die Informationen über Gegenstände des Alltags und der Fabrikation sammeln und mit diesen Daten

Analytics
Andrew Fowkes 0
In stock we trust

Success in the retail space boils down to one simple function: the conversion of sales. However, retailers can only do this if they have stock readily available. Missing a sales opportunity due to poor stock management just won’t cut it in today’s marketplace. How can we resolve this basic problem

Analytics | Customer Intelligence
Jeanne (Hyunjin) Byun 0
Walmart가 분석을 활용하는 4가지 방법

온라인 활동부터 오프라인 구매 및 소셜 노출에 이르기까지 Walmart는 전 세계 어느 리테일러보다 광범위한 고객 네트워크를 자랑합니다. 글로벌 고객 인사이트 분석 부문 수석 이사인 다니엘 소프(Daniel Thorpe)에 따르면 회사의 주간 소셜 노출만 30만 건에 달한다고 합니다. 소프는 분석 팀을 이끌면서 고객 스스로 생산하는 행동 데이터를 기반으로 고객에 대한 전반적인 이해를

1 8 9 10 11 12 13