Die am 25. Mai 2018 zur Anwendung kommende Datenschutz-Grundverordnung (DSGVO), oder auch GDPR (General Data Protection Regulation genannt), ist in der letzten Zeit in aller Munde gewesen. Besonders deren Auswirkungen auf einzelne Branchen oder auf spezielle Unternehmensbereiche wie Marketing und Vertrieb wurden vielfältig diskutiert. Parallel haben Softwarehersteller und Beratungsunternehmen erste
Author
Unternehmen, die Big Data nutzen wollen, um schlauer zu agieren und sich einen Wettbewerbsvorteil zu verschaffen, fangen meist bei der Modernisierung ihrer Analytics an. Schließlich verspricht eine moderne analytische Anwendung bessere Erkenntnisse und macht es möglich, neue Markttrends schneller zu erkennen. Doch mit der Implementierung einer neuen Visualisierungssoftware alleine ist
Welche Veränderungen bringt 2018 im Datenmanagement? Ich habe Experten nach ihrer Meinung zu den Technologietrends 2018 gefragt und sie mit meinen eigenen Erwartungen verglichen. Herauskristallisiert haben sich fünf große Trends, die uns meiner Ansicht nach dieses Jahr im Datenmanagement begleiten: 1. Datenbewegung wird wichtiger Cloud-Anbieter haben bereits gezeigt, wie einfach es
What will 2018 unveil for the data management market? I searched expert opinions on technology trends for 2018 and matched them against my own to uncover the five major trends that I think we’ll see in data management this year: 1. Data movement becomes more important. Cloud providers have proven
The primary obstacle to becoming a data-driven business is that data is not readily available, leaving valuable insights unused in data silos. To overcome this hurdle, today’s companies are creating a new role: Chief Data Officers (CDO). Responsible for unlocking insights hidden in data silos, the CDO is tasked with
When we talk about consent management for the EU’s General Data Protection Regulation (GDPR), one of the key considerations is “consent for a purpose.” It might have been sufficient in the past to provide a form with a single generic consent check box and store the fact that consent was
Helmut Plinke explains why modernizing your data management is essential to supporting your analytics platform.
SAS Data Connector to Oracle lets you easily load data from your Oracle DB into SAS Viya for advanced analytics. SAS/ACCESS Interface to Oracle (on SAS Viya) provides the required SAS Data Connector to Oracle, that should be deployed to your CAS environment. Once the below described configuration steps for
Data quality initiatives challenge organizations because the discipline encompasses so many issues, approaches and tools. Across the board, there are four main activity areas – or pillars – that underlie any successful data quality initiative. Let’s look at what each pillar means, then consider the benefits SAS Data Management brings
We all have challenges in getting an accurate and consistent view of our customers across multiple applications or sources of customer information. Suggestion-based matching is a technique found in SAS Data Quality to improve matching results for data that has arbitrary typos and incorrect spellings in it. The suggestion-based concept
Have you ever had problems matching data that has typographical errors in it? Because of the nature of arbitrary typos and incorrect spelled words a specific matching technique is required to tackle those cases. SAS Data Quality, with its traditional, in nature deterministic matching approach is by nature not best
In 2014, big data was on everyone’s mind. So in 2015, I expected to see data quality initiatives make a major shift toward big data. But I was surprised by a completely new requirement for data quality, which proves that the world is not all about big data – not
Utilizing big data analytics is currently one of the most promising strategies for businesses to gain competitive advantage and ensure future growth. But as we saw with “small data analytics,” the success of “big data analytics” relies heavily on the quality of its source data. In fact, when combining “small” and “big” data
I have participated in many discussions about master data management (MDM) being “just” about improving the quality of master data. Although master data management includes the discipline of data quality, it has a much broader scope. MDM introduces a new approach for managing data that isn't in scope of traditional data quality