Machine Learning

Get the latest machine learning algorithms and techniques

Advanced Analytics | Analytics | Machine Learning
SAS Viya: ビジュアルパイプラインで予測モデル生成(基本編)

AIプラットフォームであるSAS Viyaでは、SAS言語のみならず、PythonやR、Java、Luaなどの汎用プログラミング言語からViyaのAI&アナリティクスの機能を使用し、予測モデルを生成することができるようになっています。しかし、昨今、「AI民主化」の流れに沿って、予測モデル生成を必要としているのはデータサイエンティスト(以降:DS)だけではなく、業務部門のビジネスアナリストや一般のビジネスユーザーも必要としています。こうしたコーディングスキルを持たないビジネスユーザー向けに、SAS Viyaでは、GUI上でマウスの簡単操作だけで予測モデル生成を可能としています。 もちろん、DSの中にも、コーディングせずに、もっと簡単に精度の高い予測モデルを生成できる手段があれば活用したいと感じている人達もいます。 SAS Viyaでは、Model Studioを使用し、機械学習のモデル、時系列予測のモデル、テキストマイニングのモデルをGUIベースの簡単マウス操作で作成することができます。モデル生成プロセスをグラフィカルなフロー図として描き、実行するだけです。このフロー図のことを「パイプライン」と呼んでいます。 Model Studioで予測モデルを生成するには、大きく2通りの方法があります。 1つは、マウスの簡単ドラッグ操作でパイプラインを一から作成する方法と、もう一つは、予め用意されているパイプラインのテンプレートを使用する方法です。 まずは、パイプラインを一から作成する際の基本的な手順を紹介します。 プロジェクトの新規作成と学習用のデータソース選択 パイプラインの作成と実行 実行結果(モデル精度)の確認 1.プロジェクトの新規作成と学習用のデータソース選択 SAS Viyaの統合GUIのホームページのメニューから「モデルの作成」を選択すると、 Model Studioの画面が表示されます。 「プロジェクトの新規作成」をクリックします。 「プロジェクトの新規作成」画面内で、プロジェクトの名前を入力し、モデルの種類(データマイニングと機械学習 / テキスト分析 / 予測)を選択し、学習用のデータソースを選択します。今回は、「データマイニングと機械学習」を選び、ローンの審査モデルを作成します。HMEQJというデータソースは、顧客ごとに1行の横持ち形式のデータです。 「保存」をクリックすると、ローン審査モデルプロジェクトが作成され、選択したデータソースの変数リストが表示されます。 予測対象の項目(ターゲット変数)を指定します。変数名:BAD(ラベル名:延滞フラグ)を選択し、右画面内で、役割に「ターゲット」を選択します。 延滞フラグには、過去に延滞の実績があればフラグに“1”が、無ければ“0”が設定されています。 2.パイプラインの作成と実行 予測対象の項目を指定後、画面上部にある「パイプライン」をクリックします。 パイプラインには「データ」ノードのみが表示されています。左端の機能ノードアイコンをクリックすると、 パイプラインに追加可能な機能ノードのリストが表示されます。 今回は、欠損値補完を行った上で、勾配ブースティングとランダムフォレストでモデルを生成してみましょう。まず、データに対する前処理として欠損値補完を行います。 「データマイニングの前処理」内にある「補完」を「データ」ノード上にドラッグすると、 「データ」ノードの下に「補完」ノードが追加されます。 同様の手順で、「教師あり学習」内にある「勾配ブースティング」を「補完」ノード上へドラッグすると、「補完」ノードの下に「勾配ブースティング」ノードが追加されます。(同時に「モデルの比較」ノードが自動的に追加されます) このようにドラッグ操作でノードを追加する以外に、パイプライン上のメニューからノードを追加することもできます。 「補完」ノードの右端にある、3つのドットが縦に並んでいる(スノーマン)アイコンをクリックし、「下に追加」>「教師あり学習」>「フォレスト」の順に選択すると、 「補完」ノードの下に、「フォレスト」ノードが追加されます。 機能ノードごとの詳細なオプションの設定は、右側画面内で行います。 パイプラインが完成したら、パイプラインの実行アイコンをクリックし、実行します。実行中の機能ノードは時計アイコンがクルクル回転し、正常に完了すると緑のチェックマークが表示されます。 3.実行結果(モデル精度)の確認 パイプラインの実行が完了したら、「モデルの比較」ノードのスノーマンアイコンをクリックし、メニュー から「結果」を選択します。 モデルの比較結果が表示されます。今回は勾配ブースティングのモデルの精度の方が高い=チャンピオンであると判定されています。 「アセスメント」タブ内では、リフトやROCの情報などを確認することができます。 以上が、ビジュアルパイプラインで予測モデルを一から生成する際の基本的な手順です。 ※ビジュアルパイプラインによるモデル生成(基本)は、SAS Viya特設サイトの「機械学習」トピック内にある動画でもご覧いただけます。

Analytics | Internet of Things | Machine Learning
Jeanne (Hyunjin) Byun 0
산업용 사물인터넷(IIoT) 데이터를 금으로 바꾸는 혁신적인 기술

산업용 애플리케이션, 기계, 프로세스 등을 연결하는 기술이 발전하면서 사물인터넷(IoT), 더 정확하게는 산업용 사물인터넷(IIoT) 혁신이 가속화되고 있습니다. 산업용 사물인터넷의 가장 큰 이점은 산업, IT, 운영 기술 프로세스를 단일 시스템으로 통합하고, 자동화를 통해 운영 효율성 개선과 비용 절감 효과를 누릴 수 있다는 것입니다. 실제 세계적인 오토바이 제조 업체 할리데이비슨(Harley-Davidson)은 생산 효율성과 민첩성을 목표로

Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
인공지능(AI)이 선택한 지구상 최고의 파라다이스는 어디일까요?

나만의 파라다이스를 찾아라! 여름 휴가 계획 모두 세우셨나요? 어디로 갈지 아직 고민 중이시라면! 클릭 몇 번만으로 전 세계에서 나와 가장 잘 맞는 도시를 알려주는 ‘SAS 파라다이스 파운드(SAS Paradise Found)’ 프로젝트를 소개합니다. 사람마다 매력적인 여행지와 거주지를 선택하는 기준은 다르기 마련인데요. SAS 파라다이스 컨피규레이터(Paradise Configurator)는 가족, 문화, 자연, 안전 및 인프라, 생활비, 레스토랑

Analytics | Data Visualization | Machine Learning | SAS Events
Gregor Herrmann 0
Aus der Praxis: 5 Erkenntnisse zum Thema Data Mining und Machine Learning

Beim diesjährigen SAS Forum Deutschland in Bonn boten Sascha Schubert und ich einige Hands-on-Sessions zu Data Science und Analytics an. Nichts Neues, denken Sie wahrscheinlich. Aber mir sind einige Veränderungen zu vorherigen Events aufgefallen, die meiner Ansicht nach auf einen größeren Umbruch in der analytischen Landschaft verweisen. Hier also meine

Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
이모티콘, 감성 분석의 핵심 요소로 떠오르다

지난 7월 17일, 세계 이모티콘의 날을 맞아 애플, 유튜브, 페이스북 등 글로벌 기업들은 새로운 이모티콘을 공개하고 관련 설문조사 결과를 발표하는 등 다양한 이벤트를 진행했는데요. 많은 사람들이 습관처럼 사용하는 이모티콘은 온라인 비주얼 커뮤니케이션이라는 새로운 트렌드의 핵심 요소로 자리잡았습니다. 온라인, 특히 모바일에서 빠르고 명확하게 표현을 전달해야 할 때 이모티콘은 전 세계 누구와도

Advanced Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
머신러닝 해석력 시리즈 3탄: 부분의존성(PD) & 개별조건부기대치(ICE) 플롯 정복하기!

머신러닝 모델 해석력 시리즈 3탄! 오늘은 머신러닝 모델의 작동 원리에 대한 인사이트를 도출할 수 있는 변수를 표시하는 두 가지 방법에 대해 자세히 살펴보고자 합니다. 머신러닝 모델 해석력 시리즈 1탄과 2탄을 놓치셨다면, 클릭해주세요! 1탄: 인공지능(AI)과 머신러닝을 신뢰하기 위한 필수 조건, 해석력! 2탄: 머신러닝 해석력 시리즈 2탄: 데이터 세트를 이해하고 해석하는 방법 데이터 과학자가 모델이

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
「Pipefitter」の応用 ~CNN(特徴抽出器)+機械学習(分類器)でCNNの欠点を補完

前回は、SASの「Pipefitter」の基本的な使用方法を紹介しました。続く今回は、基本内容を踏まえ、ひとつの応用例を紹介します。 SAS Viyaのディープラーニング手法の一つであるCNNを「特徴抽出器」として、決定木、勾配ブースティングなどを「分類器」として使用することで、データ数が多くないと精度が出ないCNNの欠点を、データ数が少なくても精度が出る「従来の機械学習手法」で補強するという方法が、画像解析の分野でも応用されています。 以下は、SAS Viyaに搭載のディープラーニング(CNN)で、ImageNetのデータを学習させ、そのモデルに以下の複数のイルカとキリンの画像をテストデータとして当てはめたモデルのpooling層で出力した特徴空間に決定木をかけている例です。 In [17]: te_img.show(8,4) 以下はCNNの構造の定義です。 Build a simple CNN model   In [18]: from dlpy import Model, Sequential from dlpy.layers import * from dlpy.applications import *   In [19]: model1 = Sequential(sess, model_table='Simple_CNN')   Input Layer   In [20]: model1.add(InputLayer(3, 224, 224, offsets=tr_img.channel_means))   NOTE: Input

Fraud & Security Intelligence | Machine Learning
Magdalene Ruhnau 0
Fraud Investigation – oder die Wechselwirkung von Mensch und Maschine

Die Digitalisierung bringt enorme Potenziale für Unternehmen: individualisierte Kundenansprache, spezifische bedürfnisorientierte Angebote, bessere Steuerbarkeit der Kundeninteraktion – all dies dient letztlich der Umsatzsteigerung und der Befriedigung der Shareholder. Doch es sind nicht nur Unternehmen, die die Herausforderung der Digitalisierung von Prozessen und Produkten annehmen und ihren Profit daraus schlagen, sondern

Advanced Analytics | Analytics | Artificial Intelligence | Machine Learning
機械学習のパイプラインを簡素化するPython向けパッケージ「Pipefitter」

SASでは、Python向けパッケージ/ライブラリとして、機械学習のパイプラインの実装を簡素化する「Pipefitter」を提供しています。 SASの「Pipefitter」パッケージは、SAS Viyaまたは、SAS v9の反復可能なワークフローの一つの段階として、データ変換とモデルフィッティング向けパイプラインを開発するためのPython APIを提供します。 このパッケージを使用すると、SASでデータを操作して、次のような処理を実装できます: ・欠損値補完 ・デシジョンツリー、ニューラルネットワーク、およびその他の機械学習テクニックを使用したパラメータ推定値の適合 ・ハイパーパラメータチューニングを使用したモデル選択の高速化 ・スコアリングとモデル評価 「Pipefitter」のもう一つの重要な特徴は、SASが提供する他の2つのPythonパッケージの能力に基づいていることです。 SWAT: SAS Viyaプラットフォームのインメモリー分析エンジンであるSAS Cloud Analytic Services(CAS)を活用し様々なデータ操作や分析を可能にするPython向けパッケージ SASPy: SAS9.4の機能を活用し、分析、データ操作、および視覚化を行うためのPython向けパッケージ ロジスティック回帰でのパラメータ推定などのパイプライン処理は、SASPyを介してSAS 9で、SWATを介してCASで同じように実行されるように設計されています。 以下は、タイタニック号の乗船者データに基づくパイプラインの例です。 まず、KaggleのサイトからPandas DataFrameにデータをダウンロードします。 In [1]: import pandas as pd In [2]: train = pd.read_csv('http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv')   In [3]: train.head() Out[3]: PassengerId Survived Pclass 0 1 0 3 1 2 1

Analytics | Artificial Intelligence | Machine Learning
Charlie Chase 0
Will artificial intelligence replace humans?

We have entered the “second machine age.” The first machine age began with the industrial revolution, which was driven primarily by technology innovation. The ability to generate massive amounts of mechanical power made humans more productive. Where the steam engine started the industrial revolution, the second machine age has taken

Analytics | Fraud & Security Intelligence | Machine Learning
Shaun Barry 0
Machine Learning predicts victory for Spain. Fraud fighters should pay attention!

“Machine Learning” is a trendy term being kicked around (pun intended) by fraud fighters around the world. In fact, Machine Learning is such a popular term that it is becoming a staple in buzzword bingo games. Here’s a little secret about machine learning… many of the people who talk about

Advanced Analytics | Artificial Intelligence | Machine Learning
Ilknur Kaynar Kabul 0
Interpret model predictions with partial dependence and individual conditional expectation plots

We have updated our software for improved interpretability since this post was written. For the latest on this topic, read our new series on model-agnostic interpretability.  Assessing a model`s accuracy usually is not enough for a data scientist who wants to know more about how a model is working. Often

Advanced Analytics | Artificial Intelligence | Machine Learning
Yue Qi 0
Recurrent neural networks: An essential tool for machine learning

Sequence models, especially recurrent neural network (RNN) and similar variants, have gained tremendous popularity over the last few years because of their unparalleled ability to handle unstructured sequential data. The reason these models are called “recurrent” is that they work with data that occurs in a sequence, such as text

Machine Learning
SAS Viya:ディープラーニング&画像処理用Python API向けパッケージ:DLPy

SASでは、従来からSAS Viyaの機能をPythonなど各種汎用プログラミング言語から利用するためのパッケージであるSWATを提供していました。 これに加え、よりハイレベルなPython向けAPIパッケージであるDLPyの提供も開始され、PythonからViyaの機能をより効率的に活用することが可能となっています。 ※DLPyの詳細に関しては以下サイトをご覧ください。 https://github.com/sassoftware/python-dlpy DLPyとは DLPyの機能(一部抜粋) 1.DLPyとは DLPyは、Viya3.3以降のディープラーニングと画像処理(image action set)のために作成された、Python API向けハイレベルパッケージです。DLPyではKerasに似たAPIを提供し、ディープラーニングと画像処理のコーディングの効率化が図られています。既存のKerasのコードをほんの少し書き換えるだけで、SAS Viya上でその処理を実行させることも可能になります。 例えば、以下はCNNの層の定義例です。Kerasに酷似していることがわかります。 DLPyでサポートしているレイヤは、InputLayer, Conv2d, Pooling, Dense, Recurrent, BN, Res, Proj, OutputLayer、です。 以下は学習時の記述例です。 2.DLPyの機能(一部抜粋) 複数のイルカとキリンの画像をCNNによって学習し、そのモデルにテスト画像を当てはめて予測する内容を例に、DLPyの機能(一部抜粋)を紹介します。 2-1.メジャーなディープラーニング・ネットワークの実装 DLPyでは、事前に構築された以下のディープラーニングモデルを提供しています。 VGG11/13/16/19、 ResNet34/50/101/152、 wide_resnet、 dense_net また、以下のモデルでは、ImageNetのデータを使用した事前学習済みのweightsも提供(このweightsは転移学習によって独自のタスクに利用可能)しています。 VGG16、VGG19、ResNet50、ResNet101、ResNet152 以下は、ResNet50の事前学習済みのweightsを転移している例です。 2-2.CNNの判断根拠情報 heat_map_analysis()メソッドを使用し、画像の何処に着目したのかをカラフルなヒートマップとして出力し、確認することができます。 また、get_feature_maps()メソッドを使用し、CNNの各層の特徴マップ(feature map)を取得し、feature_maps.display()メソッドを使用し、取得されたfeature mapの層を指定して表示し、確認することもできます。 以下は、レイヤー1のfeature mapの出力結果です。 以下は、レイヤー18のfeature mapの出力結果です。 2-3.ディープラーニング&画像処理関連タスク支援機能 2-3-1.resize()メソッド:画像データのリサイズ 2-3-2.as_patches()メソッド:画像データ拡張(元画像からパッチを生成) 2-3-3.two_way_split()メソッド:データ分割(学習、テスト) 2-3-4.plot_network()メソッド:定義したディープラーニングの層(ネットワーク)の構造をグラフィカルな図として描画 2-3-5.plot_training_history()メソッド:反復学習の履歴表示

Machine Learning
SAS Viya: ディープラーニングと機械学習の判断根拠情報

前回の「ディープラーニングの判断根拠」ブログでは、PythonからSAS Viyaの機能を活用するためのパッケージであるSWATを使用した例を説明しましたが、今回は、以下2点に関してご紹介します。 SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 機械学習の判断根拠情報 1.SAS ViyaのよりハイレベルなPython APIであるDLPyを使用した画像認識モデルの判断根拠情報 この例では、複数のイルカとキリンの画像をSAS Viyaのディープラーニング(CNN)で学習させ、そのモデルに以下の画像を当てはめて、これがイルカなのか否かを判別するものです。 実際、この画像はイルカであると判定されたんですが。 SAS Viyaでは、その判断根拠となり得る情報の一つとして、入力画像のどこに着目したのかを以下の通り出力し、確認できるようになっています。 DLPyでは、get_feature_maps()メソッドでfeature mapを取得し、feature_map.display()で指定したレイヤーの内容を表示することができます。 以下は、レイヤー1のfeature mapです。 以下は、レイヤー18のfeature mapです。 白色の濃淡で、判別に影響を与えている箇所を確認することができます。 さらに、SAS Viyaでは、画像認識モデルの判断根拠情報を可視化する手法の一つである、Grad-CAMと同様に、画像の何処に着目したのかを、カラフルなヒートマップとして出力し、確認することもできるようになっています。 しかも、heat_map_analysis()メソッドを使用して、以下の通り、たった1行書くだけでです。 青、緑、赤の濃淡で、判別に影響を与えている箇所を確認することができます。 DLPyの詳細に関しては、以下をご覧ください。 https://github.com/sassoftware/python-dlpy 2.機械学習の判断根拠情報 もちろんディープラーニングだけではなく、従来からの機械学習のモデルによって導き出された予測や判断に関しても、それがなぜ正しいと言えるのか、具体的に言えば、なぜAさんはこの商品を買ってくれそうだと判断されたのか、なぜこの取引データは疑わしいと判断されたのか、を説明する必要性があるわけです。特に説明責任が求められるような業務要件においては、 ということでSAS Viyaの次期版には機械学習の判断根拠情報、モデル内容を説明するための機能が実装される予定です。 まず、影響度が最も高い変数は、という問いに対しては、従来からの変数の重要度で確認することができます。これをさらに一段掘り下げたものが、Partial Dependence (PD)です。 日本語では「部分従属」と言いますが。重要度の高い変数は、予測に対して、具体的にはどのように作用しているのかを知ることができます。 そしてこのPDを元にさらに一段掘り下げたものが、Individual Conditional Expectation (ICE)になります。 また、これらとは別に、なぜその予測結果に至ったのかを説明するテクニックとしてLocal Interpretable Model-agnostic Explanations (LIME)を活用することができます。 SAS Viyaベースの製品であるSAS Visual Data Mining and

Learn SAS | Machine Learning | Programming Tips
SAS Korea 0
[프로그래밍 팁] SAS VDMML로 딥러닝 모델 구축하는 방법

SAS 솔루션으로 다양한 종류의 심층 신경망(DNN;Deep Neural Network) 모델을 구축할 수 있습니다. 구체적으로 컨볼루션 신경망(convolutional neural networks), 순환 신경망(recurrent neural networks), 순방향 신경망(feedforward neural networks), 오토인코더 신경망(autoencoder neural networks) 등을 생성할 수 있는데요. 오늘은 ‘SAS VDMML(Visual Data Mining and Machine Learning)'을 이용해 딥러닝 모델을 구축하는 방법을 자세히 설명해 드리고자 합니다. ‘SAS 클라우드 분석 서비스’를 활용한 딥러닝

Artificial Intelligence | Data Management | Machine Learning
Roger Thomas 0
Magic vs monetization: AI tips for manufacturing executives

Remember the military computer Joshua from the 1983 Matthew Broderick movie WarGames? Joshua learned how to “play a game” by competing against other computers, got confused about reality, and nearly started WWIII. As depicted in that movie, Joshua isn’t all that different from Google’s DeepMind, which became a superhuman chess

Analytics | Artificial Intelligence | Machine Learning
Mauricio González 0
Analítica, automatización e inteligencia impulsan la modernización del sector salud

Recientemente, el Instituto Mexicano del Seguro Social (IMSS) llevó a cabo la segunda edición de las Olimpiadas de la Innovación, evento en el que se reunieron las autoridades sanitarias, prestadores de servicios y empresas de tecnología para conocer los avances que hacen posible prestar una atención segura, efectiva, oportuna y

Analytics | Artificial Intelligence | Fraud & Security Intelligence | Machine Learning
Héctor Cobo 0
SAS Global Forum: Los datos se transforman en inteligencia

La fortaleza que tiene la analítica ahora es la revolución de las tecnologías como la inteligencia artificial (IA) y el aprendizaje automático. Esta amalgama de innovaciones le da a las empresas, de todas las industrias, la oportunidad de llevar a cabo las percepciones que obtienen de sus datos a una

Advanced Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
머신러닝 해석력 시리즈 2탄: 데이터 세트를 이해하고 해석하는 방법

“모델링에 뛰어들기 전에 먼저 데이터를 이해하고 탐색하라!” 데이터 과학자를 위한 일반적인 조언입니다. 데이터 세트가 정리되어 있지 않으면 모델을 구축해도 문제를 해결하는 데 도움이 되지 않습니다. 마치 쓰레기를 꺼냈다, 넣었다 하는 것과 같죠. 강력한 머신러닝 시스템을 구축하기 위해서는 예측 작업을 정의하고, 문제를 해결하기 전에 데이터 세트를 탐색하고 이해해야 합니다. 데이터 과학자는 대부분의 시간을 모델링을

Advanced Analytics | Artificial Intelligence | Machine Learning
SAS Korea 0
고급 분석과 인공지능(AI), 스포츠 과학의 판도를 바꾸다!

‘스포츠 분석’이라고 하면 아마 많은 분들이 브래드 피트 주연의 영화 ‘머니볼(Moneyball)’을 떠올리실 텐데요. 이 영화는 2002년 분석을 활용해 오클랜드 애슬레틱스(Oakland Athletics) 야구팀을 승리로 이끈 빌리 빈(Billy Beane) 단장의 이야기를 다룹니다. 빈 단장은 스포츠 분석의 기반을 세웠지만, 오늘날 그 활용 범위는 훨씬 더 넓어졌죠! 몇 가지 예만 봐도 스포츠 분야에서 분석이 얼마나

Analytics | Artificial Intelligence | Machine Learning
Andreas Becks 0
Künstliche Intelligenz im Reality-Check: Potenziale, Grenzen, organisatorische und gesellschaftliche Konsequenzen

Gartner geht davon aus, dass dank künstlicher Intelligenz (KI) bis 2025 zwei Millionen neue Arbeitsplätze geschaffen werden. KI und Machine Learning sind in vielen Unternehmen bereits heute wichtiger Bestandteil von Geschäftsprozessen und Unternehmensbereichen. Sie erleichtern den Arbeitsalltag, optimieren die Interaktion mit Kunden, sagen den Ausfall einer Maschine zuverlässig vorher oder

Analytics | Artificial Intelligence | Internet of Things | Machine Learning
Mauricio González 0
Transformemos México, la analítica al servicio de gobiernos y ciudadanos

México se encuentra inmerso en la mayor transformación de su historia. Sin importar la inclinación política del gobierno en el poder, las instituciones clave para el desarrollo del país –gracias a su autonomía- innovan a fin de proveer mejores servicios a la ciudadanía y elevar la transparencia de sus operaciones.

1 10 11 12 13 14 18

Back to Top