Artificial Intelligence

Discover how AI is used today and how it will augment human experience in the future

Analytics | Artificial Intelligence | Machine Learning
Christian Engel 0
Künstliche Intelligenz (KI) in der Bankbranche: Ein Fallbeispiel (Teil 1)

Selbstfahrende Sport Utility Vehicle auf unseren öffentlichen Straßen, Siri immer im Zugriff, Alexa im Wohnzimmer … Künstliche Intelligenz und die dahinter funktionierenden Machine-Learning-Verfahren begegnen uns bereits heute, zum Teil eingebettet in den Alltag, zum Teil mit unserem „Wow“, wenn die US-Verkehrsaufsichtsbehörde NHTSA bestätigt, dass es bei einem Unfall mit einem selbstfahrenden

Analytics | Artificial Intelligence | Data Management | Machine Learning
Sandra Hernandez 0
Las 10 tendencias para continuar con la transformación digital en el 2018

Es claro que este año que está por finalizar ha traído grandes cambios para todo el mundo en cuanto a transformación digital se trata, se estructuraron cambios en las industrias, la economía e incluso las formas de comunicación con sus clientes. Pero la tecnología no se detiene y cada día que pasa

Analytics | Artificial Intelligence | Machine Learning
Andreas Becks 0
KI steckt noch in den Kinderschuhen – warum eigentlich?

Artificial Intelligence (AI), Machine Learning und Deep Learning zählen zu den heißesten Themen, die im Markt diskutiert werden. Und dafür gibt es gute Gründe. Zum einen erleben wir, dass Apps und Software generell, Maschinen und Fahrzeuge immer smarter werden. Wir sprechen mit unseren Smartphones. Autos fahren bald selbst. Die automatische

Analytics | Artificial Intelligence | Machine Learning
Deep learning: la nueva era de la inteligencia artificial

La aplicación de la inteligencia artificial en los negocios constituye un área en constante evolución cuya demanda aumenta día con día. Este fenómeno es resultado de la alta interacción máquina-humano que experimentamos en varios aspectos de nuestras vidas, así como de la necesidad constante de aprender y actuar de forma

Analytics | Artificial Intelligence
Michał Kudelski 0
Sztuczna inteligencja coraz mniej „sztuczna” – rozpoznawanie obrazów

Niemal każdego dnia słyszymy doniesienia o nowych osiągnięciach w dziedzinie sztucznej inteligencji i uczenia maszynowego. Co prawda, do stworzenia odpowiednika ludzkiej inteligencji w sensie szerokim i ogólnym trochę nam jeszcze brakuje, ale coraz częściej maszyny są w stanie rozwiązywać problemy, z którymi do niedawna jedynie człowiek mógł sobie poradzić.

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Data Visualization | Machine Learning
Suneel Grover 0
Algorithmic marketing attribution and conversion journey analysis [Part 3]

In Part 1 and Part 2 of this blog posting series, we discussed: Our current viewpoints on marketing attribution and conversion journey analysis in 2017. The selection criteria of the best measurement approach. Introduced our vision on handling marketing attribution and conversion journey analysis. We would like to conclude this

Advanced Analytics | Analytics | Artificial Intelligence | Customer Intelligence | Machine Learning
Malcolm Lightbody 0
Algorithmic marketing attribution and conversion journey analysis [Part 2]

In Part 1 of this blog posting series, we discussed our current viewpoints on marketing attribution and conversion journey analysis in 2017. We concluded on a cliffhanger, and would like to return to our question of which attribution measurement method should we ultimately focus on. As with all difficult questions

Analytics | Artificial Intelligence
Mary Beth Moore 0
Embracing analytics: A path forward for the intelligence community

The intelligence community needs to revamp its approach to analytics -- and that means creating an analytics strategy that will change the status quo. The challenges facing analysts are consistent throughout the strategic, operational and tactical levels of intelligence operations. The intelligence cycle (see diagram below) is a great teaching

Artificial Intelligence | Customer Intelligence
Tiffany Carpenter 0
Measuring up: robotic process automation versus real-time decision making

Editor's note: Tiffany Carpenter, Head of Customer Intelligence, SAS UK & Ireland sizes up the benefits of the two technologies and offers up a solution to businesses wanting the best of both. With constant pressure on profit margins, organisations need to strike a balance between improving cost efficiencies and customer

Advanced Analytics | Artificial Intelligence | Customer Intelligence | Machine Learning
Suneel Grover 0
Algorithmic marketing attribution and conversion journey analysis [Part 1]

Everyone has a marketing attribution problem, and all attribution measurement methods are wrong. We hear that all the time. Like many urban myths, it is founded in truth. Most organizations believe they can do better on attribution. They all understand that there are gaps, for example, missing touchpoint data, multiple

Analytics | Artificial Intelligence | Machine Learning
Scott Batchelor 0
5 questions about artificial intelligence with Intel's Pat Richards

Artificial intelligence promises to transform society on the scale of the industrial, technical, and digital revolutions before it. Machines that can sense, reason and act will accelerate solutions to large-scale problems in myriad of fields, including science, finance, medicine and education, augmenting human capability and helping us to go further,

Artificial Intelligence
PythonからSASの画像処理機能を使って画像マッチング

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている画像処理機能が入門レベルとして紹介されました。 セッション内では、皆様にとってもお馴染みの「浅草雷門」の写真を使った画像マッチングのデモも紹介しました。雷門を正面から撮った写真の中から、「雷門の提灯」の部分を切り出し、これをテンプレート画像として使用し、この「雷門の提灯」が写っている写真だけを画像マッチングによって見つけ出すというデモです。 さあ、ちゃんと「雷門の提灯」が写っている写真だけを見つけ出すことができたのでしょうか? 以下は、Jupyter Notebookを使用し、PythonからSAS の画像処理機能を活用してマッチングを実行した結果です。(コードの一部抜粋) 【ライブラリのインポート】 In [16]: # import libraries import swat import matplotlib.pyplot as plt import os import json import numpy as np 【テンプレート画像「雷門の提灯」のロード】 In [24]: # load an image to cas r = conn.image.loadImages(casout={"caslib":"casuser", 'name':tmp_file_data[0], 'replace':True}, path=tmp_file_path) tmpTable = conn.CASTable(tmp_file_data[0]) 【この画像にマッチングさせます】 【マッチング対象画像のロード】

Analytics | Artificial Intelligence
SASのAI機能で異常検知してみよう!

5月23日に開催されたSAS Forum Japan 2017の「SAS Viyaディープダイブ」セッションでは、SASのAIに搭載されている教師なし学習の3つの手法(SVDD(Support Vector Data Description), ロバストPCA, Moving Window PCA)を用いた異常検知の概要が紹介されました。 手法ごとの適用分野やSAS Studioを用いて実行した結果の紹介と、異常検知を業務に適用する際に留意すべき事項も交えてご紹介しています。 詳細(スライド内容)に関しては、以下をご覧ください。(SlideShareに公開済み) SAS Viya で異常検知してみよう! from SAS Institute Japan 詳細(講演ビデオ)に関しては、以下をご覧ください。(YouTubeに公開済み) 今なら無償でSAS Viyaを試用することができます。詳細は以下のブログを参照してください。 SAS Viyaを体感してみよう! ~SAS Viya無償試用版利用ガイド~

Advanced Analytics | Artificial Intelligence | Machine Learning
Andrew Pease 0
Image recognition: Cutting edge data science ready for business

Image recognition is a hot and hyped topic in machine learning, artificial intelligence and other technology circles. Computer vision technology is essential for realizing advancements like driverless cars, face recognition, medical outcomes predictions, and a host of other breakthrough innovations. Amidst the hype, organizations large and small are trying to understand the

Artificial Intelligence | Machine Learning
Alison Bolen 0
12 machine learning articles to catch you up on the latest trend

Machine learning is a type of artificial intelligence that uses algorithms to iteratively learn from data and finds hidden insights in data without being explicitly programmed where to look or how to find the answer. Here at SAS, we hear questions every day about machine learning: what it is, how it compares to

Artificial Intelligence | Internet of Things | Machine Learning
Peter Pugh-Jones 0
Intelligent ecosystems and the intelligence of things

I've long been fascinated by both science and the natural world around us, inspired by the amazing Sir David Attenborough with his ever-engaging documentaries and boundless enthusiasm for nature, and also by the late, great Carl Sagan and his ground-breaking documentary series, COSMOS. The relationships between the creatures, plants and

1 14 15 16 17

Back to Top