Analytics

Find out how analytics, from data mining to cognitive computing, is changing the way we do business

Analytics
SAS Japan 0
OSSによる時系列予測をSASで強化・拡張する(2/3)

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはMike Gillilandによって執筆されました。オリジナルはこちらです(英語)。 またこれは、ゲストブロガーのジェシカ・カーティス(Jessica Curtis)とアンドレア・ムーア(Andrea Moore)による3部構成記事の第2部です(第1部はこちら)。 SASがオープンソースにもたらす価値 何よりもまず、SASは時系列予測用の入力データを分散処理します。SASは時系列予測のためにデータをインテリジェントに分割する方法を理解しており、例えば、時系列グループが様々なワーカーノードにまたがって分割されることはありません。その上で、SASはオープンソースのスクリプト群そのものを複数のワーカーノードにまたがって分散させ、オープンソース・コードの実行を分散処理します。より具体的に言うと、EXTLANGパッケージはPythonまたはRのコードを呼び出す際、個々のPython/Rインタプリタを複数のワーカーノードのそれぞれに振り向けます。その結果、複数の時系列は同時並行で処理されます。このことがスケーラビリティと効率性の観点から何を意味するかを考えてみてください。これにより、あなたは自社/自組織の時系列予測能力を「一つの時系列予測課題の解決」から「組織全体の多種多様な時系列予測課題の解決」へと広げることができるようになります。しかも、より迅速かつ大規模に解決することができます。 例えば、あなたの勤務先がグローバル小売企業だと想像してみてください。あなたのビジョンは、単一の一貫した時系列予測プラットフォームで会社全体の多種多様な時系列予測課題を解決することです。膨大な数のSKUの品揃えの需要予測から、サプライチェーン全体に展開すべき適切な在庫量の判断、各店舗における労働の最適化に至るまで、あらゆる取り組みにおけるあなたの目標は、アナリティクスに基づく正確な意思決定を推進することです。今日、あなたはちょうど、「財務計画の意思決定のための集計レベルの時系列予測」をR言語で開発するプロジェクトで、最初の作業パスを終えたところだとしましょう。R言語による時系列予測アプローチは多くの点で成功しているように見えますが、あなたは店舗の労働に関する意思決定をサポートするために、これらの時系列予測機能を拡張し、より高粒度なレベルでの時系列予測を開発することを目指しています。時系列予測担当アナリストのチームは小規模であるため、あなたには、多種多様な時系列予測ユースケースに対応するために効率的に処理規模を拡大・拡張できる自動化されたプロセスが必要不可欠です。 集計レベルでの財務計画のために、あなたは1,000個の時系列処理を実行しています。店舗別および部門別の店舗労働計画の場合、この数はあっという間に10万個へと膨れ上がります。SKU/店舗レベルのサプライチェーン計画では、時系列は数百万個に及びます。これは間違いなく、大規模な時系列予測課題だと思われます。「分散処理に対応したスケーラブルな時系列予測ソリューションのパワーによってのみ克服可能な課題」ということです。ようこそ、SAS Visual Forecasting の領域へ。 どのような大規模な時系列予測課題でも、成功のカギを握るのは自動化です。そしてそれこそ、SASが行うことです。SASは統計的予測プロセスおよびオープンソース・モデルの実行を自動化することにより、お客様のビジネスにおける時系列予測プロセスの効率化を推進します。TSMODELプロシジャとEXTLANGパッケージのパワーにより、SASはオープンソース・モデルの実行時間を加速することで、時系列予測プロセスの効率化を更に推進します。これにより、あなたのチームは「時系列予測モデルを一度に一つずつ作成する負担」が軽減し、真の例外ベースのプロセスへと移行することができます。解放された時間で、事業計画の取り組みや、予測対象を新しい領域に広げる取り組みに注力できるようになります。端的に言うと、少ないリソースで多くのことが行えるようになる、ということです。 いったんモデルを作成した後は、SASが自動的に複数の出力用データセットを生成します。これは単なる時系列予測を超えた機能です。これには「モデルの仕様」、「当てはめ統計量」、「パラメータ推定値」を格納している多種多様なデータセットも含まれています。次に、これらの出力用データセットは ── あなたのご想像通り ── 分散処理にかけられます。このリッチな出力用データはデータサイエンス・チームとビジネス・チームの両方に対し、「重要な需要推進要因」や「モデルの詳細」に関する多くの洞察をもたらします。統計的予測を信用していないビジネス部門の人々と交わしたことのある様々な議論を思い出してください。その点、SASが自動的に作成する出力用データセットは「モデルがなぜ、何を行うのか」を “見える化” するために役立ち、その結果としてビジネス部門側との議論の質が高まり、モデルの採用率が改善されます。 また、SAS Visual Forecasting は、内蔵されているベストプラクティスにより、オープンソース・モデル群の強化も行います。特許取得済みのデータ診断機能やモデル構築プロセスから、リコンサイル(調整)機能付きの自動階層型予測機能、さらには、統合型の時系列セグメンテーション機能に至るまで、SAS Visual Forecastingは単なるアルゴリズムを超えたレベルで、様々なベストプラクティスに基づくエンドツーエンドの時系列予測プロセスを提供します。 自動化機能、加速機能、強化機能は全て、お客様の組織のニーズに合わせた規模調整に対応可能です。組織全体の多種多様な時系列予測ユースケースに応じて処理規模を拡大(または縮小)することができます。製品階層やロケーション階層の最下位レベルの粒度まで掘り下げる大量かつ複雑な処理にも対応できる高度なスケーラビリティにより、任意のレベルで時系列予測を実行し、結果を生成することができます。「最初に上位レベルの時系列予測を作成/調整し、それを手作業で下位レベルに落とし込む(按分する)手法」に頼る必要はもうありません。SASは、ビジネス上の意思決定が行われるのと同じレベルで、高品質な時系列予測を自動的に生成します。 (第3部に続く)      

Analytics
SAS Japan 0
OSSによる時系列予測をSASで強化・拡張する(1/3)

この記事はSAS Institute Japanが翻訳および編集したもので、もともとはMike Gillilandによって執筆されました。オリジナルはこちらです(英語)。 ゲストブロガーのジェシカ・カーティス(Jessica Curtis)とアンドレア・ムーア(Andrea Moore)による3部構成記事の第1部にようこそ。 時系列予測はユビキタスな存在 時系列予測は、事実上あらゆる業種にわたり、ビジネスにおける多種多様な意思決定の中核を支えています。それはあなたの勤務先が、「膨大なSKUの品揃えの計画」や「配送センターや店舗の労働計画の改善」に取り組む小売企業であるか、需要計画プロセスの刷新に取り組んでいる消費財企業であるかを問いません。あるいは、デジタル広告/在庫計画/価格設定のために時系列予測を活用しているメディア企業や、最適なリソース配分のためにネットワーク利用率を予測している通信企業など、挙げればきりがありません。より優れた予測を得ることのインパクトは、あらゆる企業・組織における “ビジネス上の意思決定” に広範囲かつ抜本的な向上効果をもたらします。 44年以上にわたり、SASは世界各地の数千社の企業のために大規模な時系列予測プロセスを改善し続けています。SASはその間、統計的予測の精度向上と時系列予測作成プロセスの効率化を通じて最終利益の押し上げに貢献する強固な時系列予測ソフトウェアを開発および強化し続けてきました。これは決して大げさな表現ではありません。実際、当社は何冊も書籍を出しています。 SASの最新の時系列予測テクノロジーを搭載したSAS Visual Forecasting は、全社規模の様々な時系列予測課題を迅速かつ自動的に解決するための唯一無二の機能を提供します。SAS Visual Forecastingは、最新鋭の各種アルゴリズム ── 機械学習、時系列、アンサンブル ── だけでなく、過去データの診断、複雑な階層にまたがる自動予測、予測の例外管理に関する内蔵型ベストプラクティスも搭載しています。SAS Visual Forecastingの中核にある信条の一つは、「オープンソースのモデルを実行し、それらを大規模にデプロイ(業務実装)するための、オープン・エコシステムを提供する」ということです。 現在、オープンソース・ソフトウェア(OSS)は時系列予測モデルを開発するために広く使われています。多くの企業・組織がオープンソース戦略に取り組み始めており、PythonやRを活用して時系列予測を作成していますが、組織全体の多種多様な時系列予測ユースケースに対応するべく規模を拡張しようとしたときに様々な難題に直面しています。オープンソースの時系列予測モデルを「SASのソリューション」(以下、単に「SAS」)で実行することには複数のメリットがあり、既存のオープンソース戦略に立脚しながら俊敏かつ効率的な方法を確立することができます。もはや、SASとオープンソースのいずれかを選択する必要はなく、両者は真の相補的な関係にあります。 オープンソースで開始する 多くの企業・組織は、頑健な時系列予測を作成することに苦戦しているほか、様々な時系列予測ユースケースのために規模を拡張しようとしたときに難題に直面しています。個々の時系列予測課題には、データが徐々に増加し、複雑性も増大していくという問題が伴います。 例えば、あなたの勤務先が通信企業で、あなたは追加のインフラ(例:携帯電話網のセル)投資を行うべき場所に関する意思決定をガイドするために、データ帯域幅の需要を予測する必要があるとします。新規インフラ投資を計画するためには、帯域幅需要が時の経過とともにどのように変化するかを理解する必要があります。そこであなたは、市場における総需要が徐々に増加する様子を推計するために、オープンソースの時系列予測ソリューションを構築します。そこから得られる予測は、ネットワークをどれほど拡大するべきかに関する年間計画の基礎となります。そしてあなたは、計画プロセスへのアナリティクス活用について高く評価されたとしましょう。次のサイクルでは、計画のための単独の総合的な予測ではなく、「追加データの取り込みを伴う分析」と「通信インフラの個々の構成要素に関する予測の作成」を依頼されることになりました。 図1は今回の要請が「市場だけでなく、個々の都市/中継局/ノード/構内も対象とした予測」であることを示しています。この分析には、大量のデータと多数の時系列を用いて数千あるいは数百万もの時系列予測を生成する作業に対応できる処理規模の拡張性が必要不可欠です。上位レベルの値を下位レベルの値へと配分するのではなく、高粒度レベルの個々のネットワーク・コンポーネントに関する統計的予測を集計していくことが、予測精度の向上へとつながるからです。こうした予測精度の向上が実現すれば、資本計画プロセスは更に洗練されたものとなり、リソースは最も必要性の高い場所にピンポイントで、適切なタイミングで配分されるようになります。 これはネットワーク計画に固有の話ではなく、同じテーマの議論が全ての業種で繰り返されています。ここで必要とされているのはパラダイム・シフトです。あなたはもはや、個々の時系列予測を手作業でチューニングすることはできません。数量が大きすぎるからです。 必要なのは、「あらゆるタイプのユーザー(例:プログラマーと非プログラマー)が “モデルの構築” や “高品質な時系列予測の生成” において生産的になること」および「分散環境でデータを高速に処理すること」を可能にするソリューションです。そうしたソリューションでは様々なプロセスの自動化が、高精度な時系列予測の生成を促進します。 ここまで来ると、予測モデルを構築するだけの話ではなくなります。それよりも遥かに大規模な取り組みになります。また、時系列予測の結果を事業計画プロセスに統合することも必要になります。そのためには、多くのユーザーが結果を確認・操作したり、必要に応じて処理を追加したりできるようなソリューションが必要です。また、結果を共有できる機能や、ビジネスユーザーが業務プロセスの中で結果を利用できる機能も重要です。 多くの企業が難題に直面している理由は、これまでの努力を無駄にしたくないと考えたり、継続性を懸念したりしている一方で、自社の現在のオープンソース・アプローチが既に限界に達していると気付いているからです。 SASのソリューションはオープンソースを強化・拡張する 全社的/全組織的な時系列予測の取り組みにおいてオープンソース・アプローチが限界に達したとしたら、それこそSASが本領を発揮する状況です。オープンソースの時系列予測モデルを構築するために投じてきた膨大な作業の全てを失いたくないと思うのは当然のことです。実際問題、それらを失う必要はありません。SASのアプローチでは、オープンソースのモデル群をSAS Visual Forecastingに取り込んだ上で、それらの利用価値を拡張します。 SAS Visual Forecastingによるオープンソース統合の基礎となっているのは、TSMODELプロシジャとEXTLANGパッケージです。TSMODELは、SAS Visual Forecastingの基底をなしているプロシジャです。EXTLANGパッケージは、外部言語(例:PythonやRなど)のシームレスな統合を可能にします。 TSMODELとEXTLANGは「オープンソースによる時系列予測戦略」を改善します。SASはこれらの技法を通じて、オープンソースのモデルを実行するための「分散処理に対応した拡張性・弾力性の高い方法」を提供します。データの準備から、モデルの開発、モデルのデプロイに至るまで、アナリティクス・ライフサイクルの全てのステップにおいて、SASはオープンソースの時系列予測モデルを強化します。SASはPythonやRで作成されたモデルに対してオープンなだけでなく、分析ワークロードを自動的に分散処理することでオープンソースを拡張します。ちょっと立ち止まって掘り下げましょう。言い換えると、SASが「オープンソースのモデルを改善する」というのは、ひとつには、「その実行を高速化する」ということです。また、それ以外にも、SASが備える数々の “実証済みの利用価値の高い機能性” も手に入ります。もし興味をそそられたのなら、どうぞ読み進めてください。 (第2部に続く)

Advanced Analytics | Analytics | Fraud & Security Intelligence
KiWan Lee 0
금융산업 Analytics 고도화를 위한 주요 트렌드

Contents 변화는 기회를 만든다! 2021년 주요 변화 동인 금융산업 Analytics 고도화를 위한 주요 Trends 변화는 기회를 만든다! 1968년 멕시코 올림픽 이전에 육상 높이뛰기는 ‘엎드려뛰기’나 ‘가위뛰기’가 일반적인 방식이었으며, 200cm 이상을 뛰어야 메달권에 들어갈 수 있었다. 하지만, 1963년 메드퍼드 고등학교 2학년에 재학 중이던 Dick Fosbury는 높이뛰기 선수 테스트에서 160cm를 넘는데 실패하였다. 사실

Analytics
Rick Wicklin 0
The Farey sequence

Here is an interesting math question: How many reduced fractions in the interval (0, 1) have a denominator less than 100? The question is difficult is because of the word "reduced." If we only care about the total number of fractions in (0,1) whose denominator is less than 100, we

Analytics
Mike Gilliland 0
Tom Wallace (1935-2021)

We learned this week of the passing of one of the giants in our field, Tom Wallace. Tom was as gracious and fine a gentleman as you'll meet. Through his writing, teaching, and consulting work -- in frequent collaboration with Bob Stahl -- tens of thousands of industry practitioners have

Analytics
Philip Jones 0
A unique partnership helps identify unmet needs in the energy and utilities industry

Utilities all over the country are facing multiple disruptions, from climate change to distributed energy generation to a growing need to embrace digital transformation. These challenges are more pronounced for midsize public power utilities, which are community-owned, not-for-profit and often more vulnerable to economic challenges than investor-owned utilities. As new

Analytics
SAS Taiwan 0
EG 輸出的報表如何轉成英文?

Q: 投稿英文期刊時,需要呈現英文的統計報表,但是我的EG出來的表格都是中文字怎麼辦? A: 1. 找到sas底層的sasv9.cfg檔,路徑應該在 Program FilesSASHomeSASFoundation9.4nlszt 資料夾下   2. 修改sasv9.cfg的內容 (修改前建議先複製一份舊的檔案,萬一改錯後還有一個備份可以用,另外若sas server正在run的話,強烈建議先停下server再修改,避免過程出錯) 用記事本開啟sasv9.cfg檔,找到下半部有一段寫「-LOCALE zh-TW」的地方,在它下面換行加一行「-ODSLANGCHG」如下圖所示   3. 重啟sas server 4. 使用EG跑報表時,如果要用中文的報表,則不需作任何調整。但若要變成英文的圖表,則在跑該分析前加上一段sas程式調整圖表要用的語系,並且在跑完之後再加一段sas程式將圖表語系改回原本的繁體中文,細節說明如下: 範例流程: 未加任何程式前生命表的報表如下   若先執行「轉英文圖表」的那一行sas code 則生命表的圖表調整如下(標題再用EG的標題選單改就可以) 「轉英文圖表」的那一行sas code對整個EG專案的所有報表都會起作用,所以如果要改回中文圖表顯示,必須再執行「轉回中文圖表」的那一行sas code

Analytics | Data for Good | Work & Life at SAS
SAS Colombia 0
Resiliencia corporativa y liderazgo inteligente

Generalmente hablamos de cómo los sectores económicos, las industrias y las empresas pueden aprovechar uno de los principales activos con los que cuentan en la actualidad -como son los datos- para proyectar diferentes escenarios, tomar mejores decisiones y ser cada vez más competitivas e innovadoras. También hay que hablar de

Analytics | Students & Educators | Work & Life at SAS
Adriana Rojas 0
Cerrando la brecha de género en Ciencia de Datos

La demanda de profesionales especializados en Ciencia de Datos e Inteligencia Artificial continúa creciendo en las organizaciones y se sitúa entre las 15 profesiones más solicitadas en España para este 2021, según el informe anual de Linkedin “Empleos en auge”. Estas previsiones responden a un espectacular aumento de la demanda

1 42 43 44 45 46 136

Back to Top